Chinese Journal of Child Health Care ›› 2024, Vol. 32 ›› Issue (4): 424-428.DOI: 10.11852/zgetbjzz2023-0907
• Review • Previous Articles Next Articles
LYU Lina1, ZHU Bingquan2
Received:
2023-09-04
Revised:
2024-01-10
Online:
2024-04-10
Published:
2024-04-15
Contact:
ZHU Bingquan, E-mail:zhubingquan@zju.edu.cn
吕丽娜, 朱冰泉
通讯作者:
朱冰泉,E-mail:zhubingquan@zju.edu.cn
作者简介:
吕丽娜(1994-),女,住院医师,硕士学位,主要研究方向为儿童保健。
CLC Number:
LYU Lina, ZHU Bingquan. Research progress in the effects of the main active ingredients of breast milk on the intestinal and immune functions of infants[J]. Chinese Journal of Child Health Care, 2024, 32(4): 424-428.
吕丽娜, 朱冰泉. 母乳主要活性成分对婴儿肠道及免疫功能影响的研究进展[J]. 中国儿童保健杂志, 2024, 32(4): 424-428.
Add to citation manager EndNote|Ris|BibTeX
[1] Garwolinska D, Namiesnik J, Kot-Wasik A, et al. Chemistry of human breast milk-a comprehensive review of the composition and role of milk metabolites in child development[J]. J Agric Food Chem,2018,66(45):11881-11896. [2] Nuzzi G, Trambusti I, DI Cicco ME, et al. Breast milk: More than just nutrition![J]. Minerva Pediatr(Torino),2021,73(2):111-114. [3] Yi DY, Kim SY. Human breast milk composition and function in human health:From nutritional components to microbiome and microRNAs[J]. Nutrients,2021,13(9): 3094. [4] Brink LR, Mercer KE, Piccolo BD, et al. Neonatal diet alters fecal microbiota and metabolome profiles at different ages in infants fed breast milk or formula[J]. Am J Clin Nutr,2020,111(6):1190-1202. [5] Forbes JD, Azad MB, Vehling L, et al. Association of exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life[J]. JAMA Pediatr,2018,172(7):e181161. [6] Ma J, Li Z, Zhang W, et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: A study of 91 term infants[J]. Sci Rep,2020,10(1):15792. [7] Ho NT, Li F, Lee-Sarwar KA, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations[J]. Nat Commun,2018,9(1):4169. [8] Gopalakrishna KP, Hand TW. Influence of maternal milk on the neonatal intestinal microbiome[J]. Nutrients,2020,12(3):823. [9] Zhang B, Li LQ, Liu F, et al.Human milk oligosaccharides and infant gut microbiota: Molecular structures, utilization strategies and immune function[J]. Carbohydr Polym,2022,276:118738. [10] Cheng YJ, Yeung CY.Recent advance in infant nutrition: Human milk oligosaccharides[J]. Pediatr Neonatol,2021,62(4):347-353. [11] Han SM, Derraik J, Binia A, et al. Maternal and infant factors influencing human milk oligosaccharide composition:Beyond maternal genetics[J]. J Nutr,2021,151(6):1383-1393. [12] Reverri EJ, Devitt AA, Kajzer JA, et al. Review of the clinical experiences of feeding infants formula containing the human milk oligosaccharide 2'-Fucosyllactose[J]. Nutrients,2018,10(10):1346. [13] Maessen SE, Derraik J, Binia A, et al. Perspective: Human milk oligosaccharides:Fuel for childhood obesity prevention?[J]. Adv Nutr,2020,11(1):35-40. [14] Salli K, Hirvonen J, Siitonen J, et al. Selectiveutilization of the human milk oligosaccharides 2'-Fucosyllactose, 3-Fucosyllactose, and difucosyllactose by various probiotic and pathogenic bacteria[J]. J Agric Food Chem,2021,69(1):170-182. [15] Lawson M, O'Neill IJ, Kujawska M, et al. Breast milk-derived human milk oligosaccharides promote bifidobacterium interactions within a single ecosystem[J]. ISME J,2020,14(2):635-648. [16] Borewicz K, Gu F, Saccenti E, et al. The association between breastmilk oligosaccharides and faecal microbiota in healthy breastfed infants at two, six, and twelve weeks of age[J]. Sci Rep,2020,10(1):4270. [17] Natividad JM, Marsaux B, Rodenas C, et al. Humanmilk oligosaccharides and lactose differentially affect infant gut microbiota and intestinal barrier in vitro[J]. Nutrients,2022,14(12):2546. [18] Nilsen M, Madelen SC, Leena AI, et al. Butyrate levels in the transition from an infant- to an adult-like gut microbiota correlate with bacterial networks associated with eubacterium rectale and ruminococcus gnavus[J].Genes(Basel),2020,11(11):1245. [19] Wang Y, Zou Y, Wang J, et al. Theprotective effects of 2'-Fucosyllactose against E. Coli O157 infection are mediated by the regulation of gut microbiota and the inhibition of pathogen adhesion[J]. Nutrients,2020,12(5):1284. [20] Hanisch FG, Hansman GS, Morozov V, et al. Avidity of alpha-fucose on human milk oligosaccharides and blood group-unrelated oligo/polyfucoses is essential for potent norovirus-binding targets[J]. J Biol Chem,2018,293(30):11955-11965. [21] Natividad JM, Rytz A, Keddani S, et al. Blends of human milk oligosaccharides confer intestinal epithelial barrier protection in vitro[J]. Nutrients,2020,12(10):3047. [22] Zuurveld M, van Witzenburg NP, Garssen J, et al. Immunomodulation by human milk oligosaccharides:The potential role in prevention of allergic diseases[J]. Front Immunol,2020,11:801. [23] Liu T, Chen P, Munir M, et al. HMOs modulate immunoregulation and gut microbiota in a β-lactoglobulin-induced allergic mice model[J]. Journal of Functional Foods,2020,70:103993. [24] Masi AC, Embleton ND, Lamb CA, et al. Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis[J]. Gut,2021,70(12):2273-2282. [25] Vatanen T, Franzosa EA, Schwager R, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study[J]. Nature,2018,562(7728):589-594. [26] Rahman T, Sarwar PF, Potter C, et al. Role of human milk oligosaccharide metabolizing bacteria in the development of atopic dermatitis/eczema[J]. Front Pediatr,2023,11:1090048. [27] Hanson LA. Breastfeeding provides passive and likely long-lasting active immunity[J]. Ann Allergy Asthma Immunol,1998,81(6):523-534, 537. [28] Rio-Aige K, Azagra-Boronat I, Castell M, et al. Thebreast milk immunoglobulinome[J]. Nutrients,2021,13(6):1810. [29] Gopalakrishna KP, Macadangdang BR, Rogers MB, et al. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants[J]. Nat Med,2019,25(7):1110-1115. [30] Ramanan D, Sefik E, Galvan-Pena S, et al. Animmunologic mode of multigenerational transmission governs a gut treg setpoint[J]. Cell,2020,181(6):1276-1290. [31] Johnson-Hence CB, Gopalakrishna KP, Bodkin D, et al. Stability and heterogeneity in the anti-microbiota reactivity of human milk-derived Immunoglobulin A[J]. bioRxiv,2023, 220(8):e20220839. [32] Bridgman SL, Konya T, Azad MB, et al. High fecal IgA is associated with reduced clostridium difficile colonization in infants[J]. Microbes Infect,2016,18(9):543-549. [33] Rogier EW, Frantz AL, Bruno ME, et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression[J]. Proc Natl Acad Sci U S A,2014,111(8):3074-3079. [34] Donaldson GP, Ladinsky MS, Yu KB, et al. Gut microbiota utilize immunoglobulin a for mucosal colonization[J]. Science,2018,360(6390):795-800. [35] Nakajima A, Vogelzang A, Maruya M, et al. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria[J]. J Exp Med,2018,215(8):2019-2034. [36] Lourenco M, Chaffringeon L, Lamy-Besnier Q, et al. Thespatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages[J]. Cell Host Microbe,2020,28(3):390-401. [37] Ramanan D, Sefik E, Galvan-Pena S, et al. Animmunologic mode of multigenerational transmission governs a gut treg setpoint[J]. Cell,2020,181(6):1276-1290. [38] Uchimura Y, Fuhrer T, Li H, et al. Antibodiesset boundaries limiting microbial metabolite penetration and the resultant mammalian host response[J]. Immunity,2018,49(3):545-559. [39] Gopalakrishna KP, Macadangdang BR, Rogers MB, et al. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants[J]. Nat Med,2019,25(7):1110-1115. [40] Luck H, Khan S, Kim JH, et al. Gut-associated IgA(+) immune cells regulate obesity-related insulin resistance[J]. Nat Commun,2019,10(1):3650. [41] Damaceno QS, Souza JP, Nicoli JR, et al. Evaluation of potential probiotics isolated from human milk and colostrum[J]. Probiotics Antimicrob Proteins,2017,9(4):371-379. [42] Ojo-Okunola A, Nicol M, du Toit E. Humanbreast milk bacteriome in health and disease[J]. Nutrients,2018,10(11):1643. [43] Ruiz L, Garcia-Carral C, Rodriguez JM. Unfolding the human milk microbiome landscape in the omics era[J]. Front Microbiol,2019,10:1378. [44] Lackey KA, Williams JE, Meehan CL, et al. What's normal? Microbiomes in human milk and infant feces are related to each other but vary geographically: The INSPIRE study[J]. Front Nutr,2019,6:45. [45] Wang S, Wei Y, Liu L, et al. Association between breastmilk microbiota and food allergy in infants[J]. Front Cell Infect Microbiol,2021,11:770913. [46] Zimmermann P, Curtis N. Breast milk microbiota:A review of the factors that influence composition[J]. J Infect,2020,81(1):17-47. [47] Banic M, Butorac K, Culjak N, et al. The human milk microbiota produces potential therapeutic biomolecules and shapes the intestinal microbiota of infants[J]. Int J Mol Sci,2022,23(22):14382. [48] Jiao X, Fu MD, Wang YY, et al. Bifidobacterium and lactobacillus for preventing necrotizing enterocolitis in very-low-birth-weight preterm infants:A systematic review and meta-analysis[J]. World J Pediatr,2020,16(2):135-142. [49] Mu Q, Tavella VJ, Luo XM. Role of lactobacillus reuteri in human health and diseases[J]. Front Microbiol,2018,9:757. [50] Nantavisai K, Puttikamonkul S, Chotelersak K, et al. In vitro adhesion property and competition against enteropathogens oflactobacillus strains isolated from Thai infants[J]. Wārasān Songkhlā Nakharin,2018,40(1):69-74. [51] Gueimonde M, Laitinen K, Salminen S, et al. Breast milk: A source of bifidobacteria for infant gut development and maturation?[J]. Neonatology,2007,92(1):64-66. [52] Underwood MA, Davis J, Kalanetra KM, et al. Digestion of human milk oligosaccharides by bifidobacterium breve in the premature infant[J]. J Pediatr Gastroenterol Nutr,2017,65(4):449-455. [53] Dzidic M, Mira A, Artacho A, et al. Allergy development is associated with consumption of breastmilk with a reduced microbial richness in the first month of life[J]. Pediatr Allergy Immunol,2020,31(3):250-257. [54] Riaz RM, Zhao H, Mehwish HM, et al. Anti-tumor potential of cell free culture supernatant of Lactobacillus rhamnosus strains isolated from human breast milk[J]. Food Res Int,2019,123:286-297. |
[1] | WU Shanhong, WANG Yan, YUAN Yiming, ZHAO Mingyue, GONG Zihan, ZHANG Ziwei, LI Tianyi, PEI Fei. Effects of postpartum depression on infant growth and development [J]. Chinese Journal of Child Health Care, 2024, 32(9): 994-998. |
[2] | WU Qiong, WANG Xiaotong, HUANG Yiwen, ZHANG Yanfeng, YANG Yufeng, ZHANG Ting, ZHU Zonghan. Infancy tummy time guideline [J]. Chinese Journal of Child Health Care, 2024, 32(8): 813-820. |
[3] | ZHOU Qiong, LIU Haibo, HU Bimei, GUO Yuqing. Influence of maternal feeding practice, eating behaviors and temperament of infants and toddlers on childhood overweight and obesity [J]. Chinese Journal of Child Health Care, 2024, 32(8): 850-855. |
[4] | CHEN Xiujin, JIANG Xiaolan, CHEN Hongyi, WU Mingshui, LYU Min, CHEN Junlin. Status quo and influencing factors of motor development in 12-month full-term infants [J]. Chinese Journal of Child Health Care, 2024, 32(8): 902-907. |
[5] | LUO Guangyue, LU Wei, XU Deyong, QIU Zhengfei, LI Zonglong. Effects of different feeding methods on intestinal microbiota in infants with cow's milk protein allergy [J]. Chinese Journal of Child Health Care, 2024, 32(8): 908-913. |
[6] | WANG Xue, LI Zhihui, KONG Yan, YU Guiling. Mediating effect of maternal feeding behavior on the relationship between maternal feeding anxiety and growth and development of infants [J]. Chinese Journal of Child Health Care, 2024, 32(8): 918-923. |
[7] | PAN Hongdi, ZHANG Yue, YANG Yufeng, ZHENG Yi, JIN Xingming, JIA Meixiang, JING Jin, SHAO Jie, WANG Huishan. Development of the Infant and Toddler Developmental Checklist in China [J]. Chinese Journal of Child Health Care, 2024, 32(7): 739-745. |
[8] | CONG Yan, WANG Hao, WANG Dong, YU Luting, ZHU Xiaochun. Application of earlier motion and growth indicators on the screening of autism spectrum disorder [J]. Chinese Journal of Child Health Care, 2024, 32(7): 752-756. |
[9] | MENG Senling, DING Yuan. Sleep patterns of 717 infants and toddlers aged 0 - 35 months in Nanchang [J]. Chinese Journal of Child Health Care, 2024, 32(7): 795-798. |
[10] | WANG Xiuying, ZHENG Xiaoqin, ZOU Linli, DING Ling, FAN Ling, NIE Jing. Comparison of early catch-up growth among different types of small for gestational age infants and relevant influencing factors [J]. Chinese Journal of Child Health Care, 2024, 32(6): 613-618. |
[11] | LI Xuefeng, LIU Yakun, LANG Jing, WEI Shougang. Relative importance of nutritional and metabolic related indicators in blood for obesity in children aged 1 - 6 years based on random forest algorithm [J]. Chinese Journal of Child Health Care, 2024, 32(6): 625-630. |
[12] | LI Zongqin, WANG Nianrong, SHEN Liang, XIAO Xiao, WANG Li. Consistency analysis of body composition and overweight/obesity among infants [J]. Chinese Journal of Child Health Care, 2024, 32(6): 672-677. |
[13] | HU Yue, BAO Zheng, WANG Ronghuan. Nested case-control study on the risk factors and interaction analysis of positive screening for infant motor development [J]. Chinese Journal of Child Health Care, 2024, 32(5): 502-506. |
[14] | WANG Weiqin, LIU Zhongling, HUO Yanyan, WAN Qin, LIU Qiaoyun, WU Dan, CHEN Lingyan, CHEN Jinjin. Research progress on the neurocognitive development of small for gestational age [J]. Chinese Journal of Child Health Care, 2024, 32(5): 527-533. |
[15] | SUN Zerong, QIAN Yongdong. Advances in the predictive application of abnormal early motor development in infants and toddlers [J]. Chinese Journal of Child Health Care, 2024, 32(5): 538-542. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||