[1] Walsh BK,Smallwood CD. Pediatric oxygen therapy: A review and update[J]. Respir Care,2017,62(6):645-661. [2] Cannavò L,Rulli I,Falsaperla R,et al. Ventilation,oxidative stress and risk of brain injury in preterm newborn[J]. Ital J Pediatr,2020,46(1):100. [3] Dylag AM,Haak J,Yee M,et al. Pulmonary mechanics and structural lung development after neonatal hyperoxia in mice[J]. Pediatr Res,2020,87(7):1201-1210. [4] MacFarlane PM,Mayer CA,Jafri A,et al. CPAP protects against hyperoxia-induced increase in airway reactivity in neonatal mice[J]. Pediatr Res,2021,90(1):52-57. [5] Lee MS,Su TC,Huang YC,et al. Effects of vitamin B-6 supplementation on oxidative stress and inflammatory response in neonatal rats receiving hyperoxia therapy[J]. J Food Drug Anal,2018,26(3):1086-1096. [6] Mathias M,Chang VJ,Perez M,et al. Supplemental oxygen in the newborn:Historical perspective and current trends[J]. Antioxidants (Basel),2021,10(12):1879. [7] Khurana S,Kane AE,Brown SE,et al. Effect of neonatal therapy on the motor,cognitive,and behavioral development of infants born preterm: A systematic review[J]. Dev Med Child Neurol,2020,62(6):684-692. [8] Askie LM,Darlow BA,Davis PG,et al. Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants[J]. Cochrane Database Syst Rev,2017,4(4):CD011190. [9] Vaes JEG,van Kammen CM,Trayford C,et al. Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity[J]. Glia,2021,69(3):655-680. [10] Kang L,Dong W,Li X,et al. Resveratrol relieves hyperoxia-induced brain injury in neonatal rats by activating sirt1[J]. Am J Perinatol,2021,38(S 01):e351-e358. [11] Hirunpattarasilp C,Barkaway A,Davis H,et al. Hyperoxia evokes pericyte-mediated capillary constriction[J]. J Cereb Blood Flow Metab,2022,42(11):2032-2047. [12] Watson NA,Beards SC,Altaf N,et al. The effect of hyperoxia on cerebral blood flow: A study in healthy volunteers using magnetic resonance phase-contrast angiography[J]. Eur J Anaesthesiol,2000,17(3):152-9. [13] Brugniaux JV,Coombs GB,Barak OF,et al. Highs and lows of hyperoxia:Physiological,performance,and clinical aspects[J]. Am J Physiol Regul Integr Comp Physiol,2018,315(1):R1-R27. [14] Sun Y,Chen C,Zhang X,et al. Heparin improves alveolarization and vascular development in hyperoxia-induced bronchopulmonary dysplasia by inhibiting neutrophil extracellular traps[J]. Biochem Biophys Res Commun,2020,522(1):33-39. [15] Lithopoulos MA,Toussay X,Zhong S,et al. Neonatal hyperoxia in mice triggers long-term cognitive deficits via impairments in cerebrovascular function and neurogenesis[J]. J Clin Invest,2022,132(22):e146095. [16] Polat İ,Cilaker Micili S,Çalişr M,et al. Neuroprotective effects of lacosamide and memantine on hyperoxic brain injury in rats[J]. Neurochem Res,2020,45(8):1920-1929. [17] 王叶,王红,朴丽贞,等.高氧诱导下新生大鼠脑损伤的发生机制和前列腺素E1的干预作用[J].吉林大学学报(医学版),2019,45(6):1206-1211. Wang Y,Wang H,Piao LZ,et al. Pathogenesis of brain injury induced by hyperoxia in newborn rats and intervention of prostaglandin El[J].J Jilin University (Medicine Edition),2019,45(6):1206-1211.(in Chinese) [18] Chang E,Hornick K,Fritz KI,et al. Effect of hyperoxia on cortical neuronal nuclear function and programmed cell death mechanisms[J]. Neurochem Res,2007,32(7):1142-1149. [19] Scheuer T,Sharkovska Y,Tarabykin V,et al. Neonatal hyperoxia perturbs neuronal development in the cerebellum[J]. Mol Neurobiol,2018,55(5):3901-3915. [20] Motavaf M,Piao X. Oligodendrocyte development and implication in perinatal white matter injury[J]. Front Cell Neurosci,2021,15:764486. [21] Warnock A,Toomey LM,Wright AJ,et al. Damage mechanisms to oligodendrocytes and white matter in central nervoussystem injury:The australian context[J]. J Neurotrauma,2020,37(5):739-769. [22] Serdar M,Herz J,Kempe K,et al. Protection of oligodendrocytes through neuronal overexpression of the small GTPase ras in hyperoxia-induced neonatal brain injury[J]. Front Neurol,2018,9:175. [23] Song W,Hoppe G,Hanna D,et al. Hyperoxia induced hypomyelination[J]. Biomedicines,2022,11(1):37. [24] Reich B,Hoeber D,Bendix I,et al. Hyperoxia and the immature brain[J]. Dev Neurosci,2016,38(5):311-330. [25] Finkel T. Signal transduction by reactive oxygen species[J]. J Cell Biol,2011,194(1):7-15. [26] Juan CA,Pérez de la Lastra JM,Plou FJ,et al. The chemistry of reactive oxygen species (ROS) revisited:Outlining Their role in biological macromolecules (DNA, Lipids and Proteins) and induced pathologies[J]. Int J Mol Sci,2021,22(9):4642. [27] Ozsurekci Y,Aykac K. Oxidative stress related diseases in newborns[J]. Oxid Med Cell Longev,2016,2016:2768365. [28] Zhou J,Peng Z,Wang J. Trelagliptin alleviates lipopolysaccharide (LPS)-induced inflammation and oxidative stress in acute lung injury mice[J].Inflammation,2021 ,44(4):1507-1517. [29] Pham-Huy LA,He H,Pham-Huy C. Free radicals,antioxidants in disease and health[J]. Int J Biomed Sci,2008,4(2):89-96. [30] Gandhi S,Abramov AY. Mechanism of oxidative stress in neurodegeneration[J].Oxid Med Cell Longev,2012,2012:428010. [31] Tian J,Tai Y,Shi M,et al. Atorvastatin Relieves cognitive disorder after sepsis through reverting inflammatory cytokines,oxidative stress,and neuronal apoptosis in hippocampus[J]. Cell Mol Neurobiol,2020,40(4):521-530. [32] Cao C,Ding J,Cao D,et al. TREM2 modulates neuroinflammation with elevated IRAK3 expression and plays a neuroprotective role after experimental SAH in rats[J]. Neurobiol Dis,2022,171:105809. [33] Shaforostova EA,Gureev AP,Volodina DE,et al. Neuroprotective effect of mildronate and L-carnitine on the cognitive parameters of aged mice and mice with LPS-induced inflammation[J]. Metab Brain Dis,2022,37(7):2497-2510. [34] Serdar M,Herz J,Kempe K,et al. Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia[J]. Brain Behav Immun,2016,52:106-119. [35] Ali A,Zambrano R,Duncan MR,et al.Hyperoxia-activated circulating extracellular vesicles induce lung and brain injury in neonatal rats[J]. Sci Rep,2021,11(1):8791. [36] Chen SD,Wu CL,Hwang WC,et al. More insight into BDNF against neurodegeneration:Anti-apoptosis,anti-oxidation,and suppression of autophagy[J]. Int J Mol Sci,2017,18(3):545. [37] Ya BL,Liu Q,Li HF,et al. Uric acid protects against focal cerebral ischemia/reperfusion-induced oxidative stress via activating Nrf2 and regulating neurotrophic factor expression[J]. Oxid Med Cell Longev,2018,2018:6069150. [38] Sengoku T,Murray KM,Wilson ME. Neonatal hyperoxia induces alterations in neurotrophin gene expression[J]. Int J Dev Neurosci,2016,48:31-37. [39] Scheuer T,Klein LS,Bührer C,et al. Transient improvement of cerebellar oligodendroglial development in a neonatal hyperoxia model by PDGFA Treatment[J]. Dev Neurobiol,2019,79(3):222-235. [40] Gao J,Liao Y,Qiu M,et al. Wnt/β-Catenin signaling in neural stem cell homeostasis and neurological diseases[J]. Neuroscientist,2021,27(1):58-72. [41] Abbah J,Vacher CM,Goldstein EZ,et al.Oxidative stress-induced damage to the developing hippocampus is mediated by GSK3β[J]. J Neurosci,2022,42(24):4812-4827. [42] Du M,Tan Y,Liu G,et al. Effects of the Notch signalling pathway on hyperoxia-induced immature brain damage in newborn mice[J].Neurosci Lett,2017,653:220-227. [43] Weston CR,Davis RJ. The JNK signal transduction pathway[J]. Curr Opin Cell Biol,2007,19(2):142-149. [44] Aminzadeh A,Dehpour AR,Safa M,et al. Investigating the protective effect of lithium against high glucose-induced neurotoxicity in PC12 cells:involvements of ROS,JNK and P38 MAPKs,and apoptotic mitochondria pathway[J]. Cell Mol Neurobiol,2014,34(8):1143-1150. [45] Yarza R,Vela S,Solas M,et al. c-Jun N-terminal Kinase (JNK) signaling as a therapeutic target for Alzheimer′s Disease[J]. Front Pharmacol,2016,6:321. [46] Obst S,Herz J,Alejandre Alcazar MA,et al. Perinatal hyperoxia and developmental consequences on the lung-brain axis[J]. Oxid Med Cell Longev,2022,2022:5784146. [47] Zhang LM,Zhen RR,Gu C,et al. Chinese medicine Di-Huang-Yi-Zhi protects PC12 cells from H2O2-induced apoptosis by regulating ROS-ASK1-JNK/p38 MAPK signaling[J]. BMC Complement Med Ther,2020,20(1):54. [48] Vittori DC,Chamorro ME,Hernández YV,et al. Erythropoietin and derivatives:Potential beneficial effects on the brain[J]. J Neurochem,2021,158(5):1032-1057. [49] Dewan MV,Serdar M,van de Looij Y,et al. Repetitive erythropoietin treatment improves long-term neurocognitive outcome by attenuating hyperoxia-induced hypomyelination in the developing brain[J]. Front Neurol,2020,11:804. [50] Endesfelder S,Weichelt U,Strau? E,et al. Neuroprotection by caffeine in hyperoxia-induced neonatal brain injury[J]. Int J Mol Sci,2017,18(1):187. [51] Yang L,Yu X,Zhang Y,et al. Encephalopathy in preterm infants:Advances in neuroprotection with caffeine[J]. Front Pediatr,2021,9:724161. [52] Yavuz A,Sezik M,Ozmen O,et al. Fingolimod against endotoxin-induced fetal brain injury in a rat model[J]. J Obstet Gynaecol Res,2017,43(11):1708-1713. [53] Serdar M,Herz J,Kempe K,et al. Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia[J]. Brain Behav Immun,2016,52:106-119. [54] D′Angelo G,Chimenz R,Reiter RJ,et al. Use of melatonin in oxidative stress related neonatal diseases[J]. Antioxidants (Basel),2020,9(6):477. [55] 杨山,张有辰,李慧文,等.前列腺素E1对高氧诱导新生大鼠脑损伤的保护作用[J].中国当代儿科杂志,2018,20(3):230-235. Yang S,Zhang YC,Li HW,et al.Protective effect of prostaglandin E1 against brain injury induced by hyperoxia in neonatal rats[J].Chin J of Contemp Pediatr,2018,20(3):230-235.(in Chinese) [56] 刘剑,陈亮.Tau蛋白、胶质纤维酸性蛋白在创伤性颅脑损伤程度不同患者中的表达及其与患者认知障碍相关性研究[J].陕西医学杂志,2023,52(04):452-455. Liu J,Chen L.Expression of Tau and glial fibrillary acidic protein in patients with different degrees of traumatic brain injury and their correlation with cognitive impairment[J].Shaanxi Medical Journal,2023,52(04):452-455. [57] Xuan C,Cui H,Jin Z,et al. Glutamine ameliorates hyperoxia-induced hippocampal damage by attenuating inflammation and apoptosis via the MKP-1/MAPK signaling pathway in neonatal rats[J]. Front Pharmacol,2023,14:1096309. |