[1] Wolraich ML, Hagan JF, Allan C, et al. Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents[J]. Pediatrics, 2019, 144(4): e20192528. [2] Liu A, Xu Y, Yan Q, et al. The prevalence of attention deficit/hyperactivity disorder among Chinese children and adolescents[J]. Sci Rep, 2018, 8(1): 11169. [3] Faraone SV, Biederman J, Mick E. The age-dependent decline of attention deficit hyperactivity disorder: A Meta-analysis of follow-up studies[J]. Psychol Med, 2006, 36(2): 159-165. [4] Faraone SV, Bellgrove MA, Brikell I, et al. Attention-deficit/hyperactivity disorder[J]. Nat Rev Dis Primers, 2024, 10(1): 11. [5] Halperin JM, Bédard AC, Curchack-Lichtin JT. Preventive interventions for ADHD: A neurodevelopmental perspective[J]. Neurotherapeutics, 2012, 9(3): 531-41. [6] Loh HW, Ooi CP, Barua PD, et al. Automated detection of ADHD: Current trends and future perspective[J]. Comput Biol Med, 2022, 146: 105525. [7] Mikolas P, Vahid A, Bernardoni F, et al. Training a machine learning classifier to identify ADHD based on real-world clinical data from medical records[J]. Sci Rep, 2022, 12(1): 12934. [8] Emser TS, Johnston BA, Steele JD, et al. Assessing ADHD symptoms in children and adults: Evaluating the role of objective measures[J]. Behav Brain Funct, 2018, 14(1): 11. [9] Lin IC, Chang SC, Huang YJ, et al. Distinguishing different types of attention deficit hyperactivity disorder in children using artificial neural network with clinical intelligent test[J]. Front Psychol, 2022, 13: 1067771. [10] Zhang-James Y, Chen Q, Kuja-Halkola R, et al. Machine-learning prediction of comorbid substance use disorders in ADHD youth using Swedish registry data[J]. J Child Psychol Psychiatry, 2020, 61(12): 1370-1379. [11] Phyo Wai AA, Dou M, Guan C. Generalizability of EEG-based mental attention modeling with multiple cognitive tasks[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 2959-2962. [12] Öztoprak H, Toycan M, Alp YK, et al. Machine-based classification of ADHD and nonADHD participants using time/frequency features of event-related neuroelectric activity[J]. Clin Neurophysiol, 2017, 128(12): 2400-2410. [13] Moghaddari M, Lighvan MZ, Danishvar S. Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG[J]. Comput Methods Programs Biomed, 2020, 197: 105738. [14] Zhang Y, Cai H, Nie L, et al. An end-to-end 3D convolutional neural network for decoding attentive mental state[J]. Neural Netw, 2021, 144: 129-137. [15] Loh HW, Ooi CP, Oh SL, et al. Deep neural network technique for automated detection of ADHD and CD using ECG signal[J]. Comput Methods Programs Biomed, 2023, 241: 107775. [16] Pereira-Sanchez V, Castellanos FX. Neuroimaging in attention-deficit/hyperactivity disorder[J]. Curr Opin Psychiatry, 2021, 34(2): 105-111. [17] Zhang-James Y, Razavi AS, Hoogman M, et al. Machine learning and MRI-based diagnostic models for ADHD: Are we there yet?[J]. J Atten Disord, 2023, 27(4): 335-353. [18] Uyulan C, Erguzel TT, Turk O, et al. A class activation map-based interpretable transfer learning model for automated detection of ADHD from fMRI data[J]. Clin EEG Neurosci, 2023, 54(2): 151-159. [19] Wang Z, Zhu Y, Shi H, et al. A 3D multiscale view convolutional neural network with attention for mental disease diagnosis on MRI images[J]. Math Biosci Eng, 2021, 18(5): 6978-6994. [20] Yang CM, Shin J, Kim JI, et al. Classifying children with ADHD based on prefrontal functional near-infrared spectroscopy using machine learning[J]. Clin Psychopharmacol Neurosci, 2023, 21(4): 693-700. [21] Muñoz-Organero M, Powell L, Heller B, et al. Automatic extraction and detection of characteristic movement patterns in children with ADHD based on a convolutional neural network (CNN) and acceleration images[J]. Sensors (Basel), 2018, 18(11): 3924. [22] Amado-Caballero P, Casaseca-De-La-Higuera P, Alberola-Lopez S, et al. Objective ADHD diagnosis using convolutional neural networks over daily-life activity records[J]. IEEE J Biomed Health Inform, 2020, 24(9): 2690-2700. [23] Chen X, Wang S, Yang X, et al. Utilizing artificial intelligence-based eye tracking technology for screening ADHD symptoms in children[J]. Front Psychiatry, 2023, 14: 1260031. [24] Wiguna T, Wigantara NA, Ismail RI, et al. A four-step method for the development of an ADHD-VR digital game diagnostic tool prototype for children using a DL model[J]. Front Psychiatry, 2020, 11: 829. [25] Liu Y, Qu HQ, Chang X, et al. Deep learning prediction of attention-deficit hyperactivity disorder in African Americans by copy number variation[J]. Exp Biol Med (Maywood), 2021, 246(21): 2317-2323. [26] Liu L, Feng X, Li H, et al. Deep learning model reveals potential risk genes for ADHD, especially Ephrin receptor gene EPHA5[J]. Brief Bioinform, 2021, 22(6): bbab207. [27] Vasilchenko KF, Chumakov EM. Current status, challenges and future prospects in computational psychiatry: A narrative review[J]. Consort Psychiatr, 2023, 4(3): 33-42. [28] Yoo JH, Kim JI, Kim BN, et al. Exploring characteristic features of attention-deficit/hyperactivity disorder: Findings from multi-modal MRI and candidate genetic data[J]. Brain Imaging Behav, 2020, 14(6): 2132-2147. [29] Kautzky A, Vanicek T, Philippe C, et al. Machine learning classification of ADHD and HC by multimodal serotonergic data[J]. Transl Psychiatry, 2020, 10(1): 104. [30] Iyortsuun NK, Kim SH, Jhon M, et al. A review of machine learning and deep learning approaches on mental health diagnosis[J]. Healthcare (Basel), 2023, 11(3): 285. [31] Sun J, Dong QX, Wang SW, et al. Artificial intelligence in psychiatry research, diagnosis, and therapy[J]. Asian J Psychiatr, 2023, 87: 103705. [32] Pulini AA, Kerr WT, Loo SK, et al. Classification accuracy of neuroimaging biomarkers in attention-deficit/hyperactivity disorder:Effects of sample size and circular analysis[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2019, 4(2): 108-120. [33] Musolf AM, Holzinger ER, Malley JD, et al. What makes a good prediction? Feature importance and beginning to open the black box of machine learning in genetics[J]. Hum Genet, 2022, 141(9): 1515-1528. [34] Cao M, Martin E, Li X. Machine learning in attention-deficit/hyperactivity disorder: New approaches toward understanding the neural mechanisms[J]. Transl Psychiatry, 2023, 13(1): 236. [35] Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery[J]. Lancet Oncol, 2019, 20(5): e262-e273. |