[1] Rosenbaum P, Paneth N, Leviton A, et al. A report: The definition and classification of cerebral palsy April 2006[J]. Erratum in: Dev Med Child Neurol, 2007, 49(6): 480. [2] Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report:A practical clinical definition of epilepsy[J]. Epilepsia, 2014, 55(4): 475-482. [3] Gong C, Liu A, Lian B, et al. Prevalence and related factors of epilepsy in children and adolescents with cerebral palsy: A systematic review and meta-analysis[J].Front Pediatr, 2023, 11: 1189648. [4] Gong C, Liu X, Fang L, et al. Prevalence of cerebral palsy comorbidities in China: A systematic review and meta-analysis[J]. Front Neurol,14:1233700. [5] Hanci F, Türay S, Dilek M, et al. Epilepsy and drug-resistant epilepsy in children with cerebral palsy: A retrospective observational study[J]. Epilepsy Behav, 2020, 112: 107357. [6] Mei H, Yang L, Xiao T, et al. Genetic spectrum identified by exome sequencing in a Chinese pediatric cerebral palsy cohort[J]. J Pediatr, 2022, 242: 206-212. [7] Neuray C, Maroofian R, Scala M, et al. Early-infantile onset epilepsy and developmental delay caused by biallelic GAD1 variants[J]. Brain, 2020, 143(8): 2388-2397. [8] Webb EA, AlMutair A, Kelberman D, et al. ARNT2 mutation causes hypopituitarism, post-natal microcephaly, visual and renal anomalies[J]. Brain, 2013, 136(Pt10): 3096-3105. [9] Yoneda Y, Haginoya K, Arai H, et al. De novo and inherited mutations in COL4A2, encoding the type Ⅳ collagen α2 chain cause porencephaly[J]. Am J Hum Genet, 2012, 90(1): 86-90. [10] Subramanian VS, Constantinescu AR, Benke PJ, et al. Mutations in SLC5A6 associated with brain, immune, bone, and intestinal dysfunction in a young child[J]. Hum Genet, 2017, 136(2): 253-261. [11] Li N, Zhou P, Tang H, et al. In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy[J]. Brain, 2022, 145(1): 119-141. [12] Wixey JA, Chand KK, Colditz PB, et al. Review: Neuroinflammation in intrauterine growth restriction[J]. Placenta, 2017, 54: 117-124. [13] Blair EM, Nelson KB. Fetal growth restriction and risk of cerebral palsy in singletons born after at least 35 weeks gestation[J]. Am J Obstet Gynecol, 2015, 212(4): 520. e1-520. e7. [14] Wan L, Luo K, Chen P. Mechanisms underlying neurologic injury in intrauterine growth restriction[J]. J Child Neurol, 2021, 36(9): 776-784. [15] Wiszniewski W, Gawlinski P, Gambin T, et al. Comprehensive genomic analysis of patients with disorders of cerebral cortical development[J]. Eur J Hum Genet, 2018, 26(8): 1121-1131. [16] Papaioannou G, Garel C. The fetal brain: Migration and gyration anomalies - pre- and postnatal correlations[J]. Pediatr Radiol, 2023, 53(4): 589-601. [17] Wiszniewski W, Gawlinski P, Gambin T, et al. Comprehensive genomic analysis of patients with disorders of cerebral cortical development[J]. Eur J Hum Genet, 2018, 26(8): 1121-1131. [18] Mangamba DCK, Enyama D, Foko LPK, et al. Epidemiological, clinical, and treatment-related features of children with cerebral palsy in Cameroon: A hospital-based study[J]. Arch Pediatr, 2022, 29(3): 219-224. [19] Chaudhary S, Bhatta NK, Poudel P, et al. Profile of children with cerebral palsy at a tertiary hospital in eastern Nepal[J]. BMC Pediatr, 2022, 22(1): 415. [20] Brégère C, Schwendele B, Radanovic B, et al. Microglia and atem-cell mediated neuroprotection after neonatal hypoxia-ischemia[J]. Stem Cell Rev Rep, 2022, 18(2): 474-522. [21] Marefi A, Husein N, Dunbar M, et al. Risk factors for term-born periventricular white matter injury in children with cerebral palsy: A case-control study[J]. Neurology, 2022, 99(22): e2485-e2493. [22] Zaghloul N, Kurepa D, Bader MY, et al. Prophylactic inhibition of NF-κB expression in microglia leads to attenuation of hypoxic ischemic injury of the immature brain[J]. J Neuroinflammation, 2020, 17(1): 365. [23] Tu YF, Wang ST, Shih HI, et al. Epilepsy occurrence after neonatal morbidities in very preterm infants[J]. Epilepsia, 2019, 60(10): 2086-2094. [24] Shang Q, Ma CY, Lv N, et al. Clinical study of cerebral palsy in 408 children with periventricular leukomalacia[J]. Exp Ther Med, 2015, 9(4): 1336-1344. [25] Gonzalez FF, Ferriero DM. Neuroprotection in the newborn infant[J]. Clin Perinatol, 2009, 36(4): 859-880. [26] Guo X, Tang P, Zhang L, et al. Mendelian randomization approach shows no causal effects of gestational age on epilepsy in offspring[J]. Epilepsy Res, 2023, 191: 107102. [27] Karatoprak E, Szen G, Saltk S. Risk factors associated with epilepsy development in children with cerebral palsy[J]. Childs Nerv Syst, 2019, 35(7): 1181-1187. [28] Nyman J, Mikkonen K, Metsranta M, et al. Poor aEEG background recovery after perinatal hypoxic ischemic encephalopathy predicts postneonatal epilepsy by age 4 years[J]. Clin Neurophysiol, 2022, 143: 116-123. [29] Novak CM, Ozen M, Burd I. Perinatal brain injury: Mechanisms, prevention, and outcomes[J]. Clin Perinatol, 2018, 45(2): 357-375. [30] Kukec E, Goričar K, Dolan V, et al. HIF1A polymorphisms do not modify the risk of epilepsy nor cerebral palsy after neonatal hypoxic-ischemic encephalopathy[J]. Brain Res, 2021, 1757: 147281. [31] Tam EWY, Widjaja E, Blaser SI, et al. Occipital lobe injury and corticalvisual outcomes after neonatal hypoglycemia[J]. Pediatrics, 2008, 122: 507-512. [32] Kapoor D, Sidharth, Sharma S, et al. Electroclinical spectrum of childhood epilepsy secondary to neonatal hypoglycemic brain injury in a low resource setting: A 10-year experience[J]. Seizure, 2020, 79: 90-94. [33] 蔡小兰, 孙群英. 儿童脑性瘫痪的病因研究进展[J]. 山东医药, 2020, 60(32): 104-107. Cai XL, Sun QY. Research progress on the etiology of cerebral palsy in children[J]. Shandong Med, 2020, 60 (32): 104-107.(in Chinese) [34] Zhang L. Severe neonatal hyperbilirubinemia induces temporal and occipital lobe seizures[J]. PLoS One, 2018, 13(5): e0197113. [35] Dunbar M, Kirton A. Perinatal stroke: Mechanisms, management, and outcomes of early cerebrovascular brain injury[J]. Lancet Child Adolesc Health, 2018, 2(9): 666-676. [36] Shellhaas RA, Chang T, Wusthoff CJ, et al. Treatment duration after acute symptomatic seizures in neonates: A multicenter cohort study[J]. J Pediatr, 2017, 181: 298-301. [37] Suppiej A, Mastrangelo M, Mastella L, et al. Pediatric epilepsy following neonatal seizures symptomatic of stroke[J]. Brain Dev, 2016, 38(1): 27-31. [38] Fox CK, Mackay MT, Dowling MM, et al. Prolonged or recurrent acute seizures after pediatric arterial ischemic stroke are associated with increasing epilepsy risk[J]. Dev Med Child Neurol, 2017, 59(1): 38-44. [39] Vojcek E, Jermendy A, Laszlo AM, et al. The role of brain territorial involvement and infection/inflammation in the long-term outcome of neonates with arterial ischemic stroke: A population-based cohort study[J]. Early Hum Dev, 2021, 158: 105393. [40] Guiraut C, Cauchon N, Lepage M, et al. Perinatal arterial ischemic stroke is associated to materno-fetal immune activation and intracranial arteritis[J]. Int J Mol Sci, 2016, 17(12): 1980. [41] 张萌, 王兰桂. 癫痫发病机制的研究进展[J]. 中西医结合心血管病电子杂志, 2020, 8(35): 31-32. Zhang M, Wang LG. Research progress in the pathogenesis of epilepsy[J]. Cardiovascular Disease Journal of Integrated Traditional Chinese and Western Medicinel(Electonic), 2020, 8(35): 31-32.(in Chinese) [42] Yulianti R, Gunawan PI, Saharso D. Comparison of clinical characteristics and neuroimaging of cerebral palsy with and without epilepsy in children[J]. Indian J Forensic Med Toxicol, 2021, 15(1): 1442-1450. [43] Zareen Z, Strickland T, Fallah L, et al. Cytokine dysregulation in children with cerebral palsy[J]. Dev Med Child Neurol, 2021, 63(4): 407-412. [44] Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy[J]. Brain Behav Immun, 2008, 22(6): 797-803. [45] Wu Q, Wang H, Liu X, et al. Microglial activation and over pruning involved in developmental epilepsy[J]. J Neuropathol Exp Neurol, 2023, 82(2): 150-159. [46] Khan D, Bedner P, Müller J, et al. TGF-β Activated Kinase 1 (TAK1) is activated in microglia after experimental epilepsy and contributes to epileptogenesis[J]. Mol Neurobiol, 2023, 60(6): 3413-3422. [47] 王钦宇. TAK1调节神经免疫微环境和神经元凋亡在脑瘫疾病模型中的作用及机制研究[D]. 南通:南通大学, 2021. Wang QY. The role and mechanism of TAK1 in regulating neuroimmune microenvironment and neuronal apoptosis in cerebral palsy disease model[D]. Nantong:Nantong Univ, 2021.(in Chinese) [48] Banote RK, Akel S, Zelano J. Blood biomarkers in epilepsy[J]. Acta Neurol Scand, 2022, 146(4): 362-368. [49] Kaur C, Sivakumar V, Ang LS, et al. Hypoxic damage to the periventricular white matter in neonatal brain: Role of vascular endothelial growth factor, nitric oxide and excitotoxicity[J]. J Neurochem, 2006, 98(4): 1200-1216. [50] Lin CY, Chang YC, Wang ST, et al. Altered inflammatory responses in preterm children with cerebral palsy[J]. Ann Neurol, 2010, 68(2): 204-212. [51] McAdams RM, Juul SE. The role of cytokines and inflammatory cells in perinatal brain injury[J]. Neurol Res Int, 2012, 2012: 561494. [52] Wu J, Li X. Plasma tumor necrosis factor-alpha (TNF-α) levels correlate with disease severity in spastic diplegia, triplegia, and quadriplegia in children with cerebral Palsy[J]. Med Sci Monit, 2015, 21: 3868-3874. [53] 刘洪俊. IL-6、IL-10和TNF-α参与脑性瘫痪患儿脑损伤的相关性研究[D].新乡:新乡医学院, 2017. Liu HJ. Correlation study of IL-6, IL-10 and TNF-α involved in brain injury in children with cerebral palsy[D]. Xinxiang:Xinxiang Med Univ, 2017.(in Chinese) [54] Wang B, Wang F, Wu D, et al. Relationship between TNF-α and the risk of cerebral palsy: A systematic review and meta-analysis[J]. Front Neurol, 2022, 13: 929280. [55] Fleiss B, Gressens P. Tertiary mechanisms of brain damage: A new hope for treatment of cerebral palsy[J]. Lancet Neurol, 2012, 11(6): 556-566. [56] Mor O, Stavsky M, Yitshak-Sade M, et al. Early onset preeclampsia and cerebral palsy:A double hit model[J]. Am J Obstet Gynecol, 2016, 214(1): 105.e1-9. [57] Wan L, Luo K, Chen P. Mechanisms underlying neurologic injury in intrauterine growth restriction[J]. J Child Neurol, 2021, 36(9): 776-784. [58] Moore KW, de Waal Malefyt R, Coffman RL, et al. Interleukin-10 and the interleukin-10 receptor[J]. Annu Rev Immunol, 2001, 19: 683-765. [59] 逯军, 潘翔, 陈伟, 等. 102例不明原因脑瘫患儿线粒体基因变异筛查[J]. 中国热带医学, 2020, 20(9): 839-842,848. Lu J, Pan X, Chen W, et al. Screening of mitochondrial genetic variation in 102 children with unexplained cerebral palsy[J]. Chin Tropical Med, 2020, 20(9): 839-842,848.(in Chinese) [60] Rodriguez J, Li T, Xu Y, et al. Role of apoptosis-inducing factor in perinatal hypoxic-ischemic brain injury[J]. Neural Regen Res, 2021, 16(2): 205-213. [61] Dayanidhi S, Buckner EH, Redmond RS, et al. Skeletal muscle maximal mitochondrial activity in ambulatory children with cerebral palsy[J]. Dev Med Child Neurol, 2021, 63(10): 1194-1203. [62] Sen A, Gurdziel K, Liu J, et al. Smooth, an hnRNP-L homolog, might decrease mitochondrial metabolism by post-transcriptional regulation of isocitrate dehydrogenase (Idh) and other metabolic genes in the sub-acute phase of traumatic brain injury[J]. Front Genet, 2017, 8: 175. [63] Pingel J, Vandenrijt J, Kampmann ML, et al. Altered gene expression levels of genes related to muscle function in adults with cerebral palsy[J]. Tissue Cell, 2022, 76: 10174. [64] Aycicek A, Iscan A. Oxidative and antioxidative capacity in children with cerebral palsy[J]. Brain Res Bull, 2006, 69(6): 666-668. [65] 杨海燕, 吴丽文. 线粒体功能障碍与癫痫发病机制[J]. 中风与神经疾病杂志, 2018, 35(8): 766-768. Yang HY, Wu LW. Mitochondrial dysfunction and pathogenesis of epilepsy[J]. J Apoplexy Nerv Dis, 2018, 35(8): 766-768.(in Chinese) |