[1] Dallora AL, Anderberg P, Kvist O, et al. Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis[J]. PLoS ONE, 2019, 14(7):e220242. [2] Larson DB, Chen MC, Lungren MP, et al. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs[J]. Radiology, 2018, 287(1):313-322. [3] Li S, Liu B, Li S, et al. A deep learning-based computer-aided diagnosis method of X-ray images for bone age assessment[J]. Complex Intell Syst, 2022, 8(3):1929-1939. [4] Kim JR, Shim WH, Yoon HM, et al. Artificial intelligence for pediatric bone age assessment: A systematic review on accuracy and clinical feasibility[J]. Pediatr Radiol, 2021, 51(5):789-798. [5] Wang Y, Zhang J, Shen Y, et al. Ethnic-specific adjustments improve AI-based bone age assessment in multiracial cohorts[J]. Sci Rep, 2023, 13(1):45-67. [6] Chen X, Liu Z, Zhang L, et al. Deep learning models for bone age prediction: A comparative study of GP and TW3 methods in Chinese children[J]. Front Pediatr, 2022, 10:901234. [7] Zhang H, Li Q, Wang M, et al. A transfer learning approach for bone age assessment using small-scale datasets[J]. IEEE J Biomed Health Inform, 2021, 25(9):3421-3430. [8] Satoh M. Advances in automated bone age assessment: Integrating AI with population-specific standards.[J]. Clin Pediatr Endocrinol, 2020, 29(4):143-152. [9] Cole TJ, Rousham EK, Hawley NL. Secular trends and ethnic variations in skeletal maturation: Implication for clinical practice[J].Arch Dis Child, 2020, 105(2):138-143. [10] Liu B, Zhang A, Gertych A. Real-time bone age assessment using lightweight convolutional neural networks[J]. Med Image Anal, 2023, 85:102756. [11] Khan CE. Artificial intelligence in radiology: Challenges and opportunities[J].Radiol Artif Intell, 2019, 1(1):e184001. [12] Dahlberg PS, Mosdøl A, Ding Y. Global disparities in skeletal maturation: A meta-analysis of Greulich-Pyle atlas applicability[J]. Eur Radiol, 2022, 32(1):2936-2948. [13] Lee H, Tajmir S, Do S. Deep learning for automated pediatric bone age assessment: From research to clinical deploymen[J]. J Digit Imaging, 2020, 33(4):427-441. [14] Zhou T, Wang J, Chen Y. Impact of socioeconomic factors on skeletal maturation in Chinese adolescents: A cross-sectional study[J]. BMC Pediatr, 2023, 23(1):189. [15] Joon S, Sung S, Kim Y. TW3-based AI system for bone age assessment: Validation in multiethnic cohorts[J]. IEEE Access, 2021, 9:13456-13465. [16] Cai ZW, Wang M, Xiong A. Modernizing bone age assessment: A hybrid model combining deep learning and traditional methods[J]. J Med Syst, 2020, 44(12):213. [17] Mutasa S, Chang PD, Ruzal-Shapiro C. Machine learning for pediatric radiology: Current applications and future directions[J].Pediatr Radiol, 2021, 51(6):987-995. [18] Duren DL, Sherwood RJ. Secular trends in skeletal maturation: A global perspective[J]. Clin Orthop Relat Res, 2022, 480(8):2559-2567. [19] Zhang L, Gertych A. Ethical considerations in AI-driven medical diagnostics: A focus on pediatric imaging[J]. Artif Intell Med, 2023, 136:102478. [20] Kim JR, Lee YS, Yu J. Comparative analysis of bone age assessment methods in Korean children: AI vs. traditional approaches[J]. Korean J Radiol, 2022, 23(1):201-205. |