Chinese Journal of Child Health Care ›› 2023, Vol. 31 ›› Issue (5): 521-525.DOI: 10.11852/zgetbjzz2022-1082
• Review • Previous Articles Next Articles
LIU Jiamin, ZHAO Sha, ZHONG Yan
Received:
2022-09-05
Revised:
2023-02-03
Online:
2023-05-10
Published:
2023-05-06
Contact:
ZHONG Yan, E-mail:zhongyan@163.com
刘佳敏, 赵莎, 钟燕
通讯作者:
钟燕,E-mail:zhongyan@163.com
作者简介:
刘佳敏(1997-),女,湖南人,在读硕士研究生,主要研究方向为儿童保健。
基金资助:
CLC Number:
LIU Jiamin, ZHAO Sha, ZHONG Yan. Research advance on exosomes and neuropsychiatric disorders in children[J]. Chinese Journal of Child Health Care, 2023, 31(5): 521-525.
刘佳敏, 赵莎, 钟燕. 外泌体与儿童神经精神障碍的研究进展[J]. 中国儿童保健杂志, 2023, 31(5): 521-525.
Add to citation manager EndNote|Ris|BibTeX
[1] O'brien K, Breyne K, Ughetto S, et al.RNA delivery by extracellular vesicles in mammalian cells and its applications[J].Nat Rev Mol Cell Biol, 2020, 21(10): 585-606. [2] Van Niel G, D'angelo G, Raposo G.Shedding light on the cell biology of extracellular vesicles[J].Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. [3] 朱梦梅, 林佳莉, 王楚棋, 等.治疗性外泌体的研究进展[J].药学学报, 2022, 57(3): 627-637. Zhu MM, Lin JL, Wang CQ, et al.Research progress of therapeutic exosomes[J].ActaPharmaceutica Sinica, 2022, 57(3): 627-637.(in Chinese) [4] 单政铭, 陶述春, 胡春梅, 等.人脐带间充质干细胞来源外泌体的提取、鉴定和蛋白组学分析[J].中国组织工程研究, 2022, 26(19): 3036-3042. Dan ZM, Tao CS, Hu CM, et al.Extraction, identification and proteomic analysis of exosomes derived from human umbilical cord mesenchymal stem cells[J].Chinese Journal of Tissue Engineering Research, 2022, 26(19): 3036-3042.(in Chinese) [5] 夏凡.小肠上皮组织外泌体提取与鉴定及功能研究 [D].南京:南京医科大学, 2019. Xia F.Isolation and identification of exosomes and their physiological functions[D].Nanjing:Nanjing Medical University, 2019.(in Chinese) [6] Kalluri R, Lebleu VS.The biology, function, and biomedical applications of exosomes[J].Science, 2020, 367(6478):eaau6977. [7] 毕焕焕.支气管肺泡灌洗液外泌体miRNA在非小细胞肺癌诊断中的初步研究[D].青岛:青岛大学, 2021. Bi HH.A preliminary study of bronchoalveolar lavage fluid exosomal miRNAs in the diagnosis of non-small cell lung cancer[D].Qingdao:Qingdao University, 2021.(in Chinese) [8] He C, Zheng S, Luo Y, et al.Exosome theranostics: Biology and translational medicine[J].Theranostics, 2018, 8(1): 237-255. [9] Larios J, Mercier V, Roux A, et al.ALIX- and ESCRT-Ⅲ-dependent sorting of tetraspanins to exosomes[J].J Cell Biol, 2020, 219(3):e201904113. [10] Hou K, Li G, Zhao J, et al.Bone mesenchymal stem cell-derived exosomal microrna-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the pten-mediated akt signaling pathway[J].J Neuroinflammation, 2020, 17(1): 46. [11] Xu L, Ji H, Jiang Y, et al.Exosomes derived from circakap7-modified adipose-derived mesenchymal stem cells protect against cerebral ischemic injury[J].Front Cell Dev Biol, 2020, 8: 569977. [12] Hannafon BN, Trigoso YD, Calloway CL, et al.Plasma exosome micrornas are indicative of breast cancer[J].Breast Cancer Res, 2016, 18(1): 90. [13] 刘蜜, 向田, 李叶静, 等.血液mirna-548ah在慢性乙型肝炎病毒感染不同时期的表达及其临床价值[J].中华实验和临床感染病杂志(电子版), 2021, 15(5): 337-343. Liu M, Xiang T, Li YJ, et al.Expression of microRNA548ah in blood at different stages of chronic hepatitis B virus infection and its clinical value[J].Chin J Exp Clin Infect Dis (Electronic Edition), 2021, 15(5): 337-343.(in Chinese) [14] Korkut C, Li Y, Koles K, et al.Regulation of postsynaptic retrograde signaling by presynaptic exosome release[J].Neuron, 2013, 77(6): 1039-1046. [15] Korkut C, Ataman B, Ramachandran P, et al.Trans-synaptic transmission of vesicular wnt signals through evi/wntless[J].Cell, 2009, 139(2): 393-404. [16] Sharma P, Mesci P, Carromeu C, et al.Exosomes regulate neurogenesis and circuit assembly[J].Proc Natl Acad SciUSA,2019,116(32): 16086-16094. [17] Li W, Wang S, He H, et al.Expression and function of Ndel1 during the differentiation of neural stem cells induced by hippocampal exosomesticle[J].Stem Cell Res Ther, 2021, 12(1): 51. [18] Leng F, Edison P.Neuroinflammation and microglial activation in alzheimer disease: Where do we go from here?[J].Nat Rev Neurol, 2021, 17(3): 157-172. [19] Pritchard A, Tousif S, Wang Y, et al.Lung tumor cell-derived exosomes promote m2 macrophage polarization[J].Cells, 2020, 9(5):1303. [20] Xian P, Hei Y, Wang R, et al.Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice[J].Theranostics, 2019, 9(20): 5956-5975. [21] Dantzer R.Neuroimmune interactions: From the brain to the immune system and vice versa[J].Physiol Rev, 2018, 98(1): 477-504. [22] Segura E, Nicco C, Lombard B, et al.ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming[J].Blood, 2005, 106(1): 216-223. [23] Anel A, Gallego-Lleyda A, De Miguel D, et al.Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease[J].Cells, 2019, 8(2):154. [24] Tavasolian F, Hosseini AZ, Rashidi M, et al.The impact of immune cell-derived exosomes on immune response initiation and immune system function[J].Curr Pharm Des, 2021, 27(2): 197-205. [25] Lord C, Elsabbagh M, Baird G, et al.Autism spectrum disorder[J].Lancet, 2018, 392(10146): 508-520. [26] Kodak T, Bergmann S.Autism spectrum disorder: Characteristics, associated behaviors, and early intervention[J].Pediatr Clin North Am, 2020, 67(3): 525-535. [27] Zhubi A, Chen Y, Guidotti A, et al.Epigenetic regulation of RELN and GAD1 in the frontal cortex (FC) of autism spectrum disorder (ASD) subjects[J].Int J Dev Neurosci, 2017, 62: 63-72. [28] Saxena R, Babadi M, Namvarhaghighi H, et al.Role of environmental factors and epigenetics in autism spectrum disorders[J].Prog Mol Biol Transl Sci, 2020, 173: 35-60. [29] Siniscalco D, Schultz S, Brigida AL, et al.Inflammation and neuro-immune dysregulations in autism spectrum disorders[J].Pharmaceuticals (Basel), 2018, 11(2):56. [30] Gevezova M, Sarafian V, Anderson G, et al.Inflammation and mitochondrial dysfunction in autism spectrum disorder[J].CNS Neurol Disord Drug Targets, 2020, 19(5):320-323. [31] Tsilioni I, Theoharides TC.Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete il-1beta[J].J Neuroinflammation, 2018, 15(1): 239. [32] Perets N, Hertz S, London M, et al.Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of btbr mice[J].Mol Autism, 2018, 9: 57. [33] Perets N, Oron O, Herman S, et al.Exosomes derived from mesenchymal stem cells improved core symptoms of genetically modified mouse model of autism shank3b[J].Mol Autism, 2020, 11(1): 65. [34] Tomasik J, Rahmoune H, Guest PC, et al.Neuroimmune biomarkers in schizophrenia[J].Schizophr Res, 2016, 176(1): 3-13. [35] Richetto J, Meyer U.Epigenetic modifications in schizophrenia and related disorders: Molecular scars of environmental exposures and source of phenotypic variability[J].Biol Psychiatry, 2021, 89(3): 215-226. [36] Amoah SK, Rodriguez BA, Logothetis CN, et al.Exosomal secretion of a psychosis-altered mirna that regulates glutamate receptor expression is affected by antipsychotics[J].Neuropsychopharmacology, 2020, 45(4): 656-665. [37] Du Y, Yu Y, Hu Y, et al.Genome-wide, integrative analysis implicates exosome-derived microrna dysregulation in schizophrenia[J].Schizophr Bull, 2019, 45(6): 1257-1266. [38] Tan G, Wang L, Liu Y, et al.The alterations of circular rna expression in plasma exosomes from patients with schizophrenia[J].J Cell Physiol, 2021, 236(1): 458-467. [39] Lee EE, Winston-Gray C, Barlow JW, et al.Plasma levels of neuron- and astrocyte-derived exosomal amyloid beta1-42, amyloid beta1-40, and phosphorylated tau levels in schizophrenia patients and non-psychiatric comparison subjects: Relationships with cognitive functioning and psychopathology[J].Front Psychiatry, 2020, 11: 532624. [40] Ranganathan M, Rahman M, Ganesh S, et al.Analysis of circulating exosomes reveals a peripheral signature of astrocytic pathology in schizophrenia[J].World J Biol Psychiatry, 2022, 23(1): 33-45. [41] Guo C, Li J, Guo M, et al.Aberrant expressions of MIAT and PVT1 in serum exosomes of schizophrenia patients[J].Schizophr Res, 2022, 240: 71-72. [42] Du Y, Chen L, Li XS, et al.Metabolomic identification of exosome-derived biomarkers for schizophrenia: A large multicenter study[J].Schizophr Bull, 2021, 47(3): 615-623. [43] Guerrini R, Marini C, Barba C.Generalized epilepsies[J].Handb Clin Neurol, 2019, 161: 3-15. [44] Wei N, Zhang H, Wang J, et al.The progress in diagnosis and treatment of exosomes and micrornas on epileptic comorbidity depression[J].Front Psychiatry, 2020, 11: 405. [45] Stern JS.Tourette's syndrome and its borderland[J].Pract Neurol, 2018, 18(4): 262-270. [46] Efron D, Dale RC.Tics and tourette syndrome[J].J Paediatr Child Health, 2018, 54(10): 1148-1153. [47] Hartmann A, Worbe Y.Tourette syndrome: Clinical spectrum, mechanisms and personalized treatments[J].Curr Opin Neurol, 2018, 31(4): 504-509. [48] Hsu CJ, Wong LC, Lee WT.Immunological dysfunction in tourette syndrome and related disorders[J].Int J Mol Sci, 2021, 22(2):853. |
[1] | XIE Haixia, LUO Hongxia, LIU Haixia, SHAO Qinnan, FENG Guojun, WEN Yalan. Impact of histological chorioamnioitis on complications and neurodevelopment in premature infants at 1 year of age [J]. Chinese Journal of Child Health Care, 2024, 32(9): 947-952. |
[2] | JING Jin. Treatment and intervention of autism spectrum disorder in China and suggestions for further practice [J]. Chinese Journal of Child Health Care, 2023, 31(9): 939-944. |
[3] | LI Yicheng, ZHANG Yuanyuan, HUO Yanyan, WU Dan, MA Ling, QIU Xiaoyan, MA Chenhuan, WANG Jian, LUO Jieming, LI Tianshu, XU Jing, ZHOU Jie, SUN Tingting, SHEN Hongying, XU Lei, WANG Yu, CHEN Jinjin. Preliminary study on the application of mobile terminal in the early screening for autism spectrum disorder in children at home [J]. Chinese Journal of Child Health Care, 2023, 31(9): 963-968. |
[4] | LI Jia, ZHANG Yanchi. Research advances on the correlation of gene polymorphisms of vitamin D receptor and vitamin D level with neurodevelopmental disorders in children [J]. Chinese Journal of Child Health Care, 2023, 31(5): 516-520. |
[5] | XIA Zhenglong, SONG Yanyan. Research progress in the neurodevelopment of preterm infants with bronchopulmonary dysplasia [J]. Chinese Journal of Child Health Care, 2023, 31(4): 390-394. |
[6] | WANG Na, LI Xiaoying. Progress in neurodevelopmental assessment of premature infants [J]. Chinese Journal of Child Health Care, 2023, 31(4): 404-407. |
[7] | HUANG Heng-ye, YU Guang-jun. Review of diagnostic scales for the assessment of early neurodevelopment in infants and toddlers [J]. Chinese Journal of Child Health Care, 2023, 31(2): 162-166. |
[8] | SHEN Xiu-shu, WANG Jun. Research progress in clinical application of general movement assessment [J]. Chinese Journal of Child Health Care, 2023, 31(2): 167-170. |
[9] | CHEN Yi-ru, CHEN Wen-xiong. Research progress in neurodevelopmental disorder caused by KIF5C gene mutation [J]. Chinese Journal of Child Health Care, 2023, 31(2): 171-175. |
[10] | MEI Lian-ni, HU Chun-chun, XU Qiong. Progress in drug therapy for fragile X syndrome [J]. Chinese Journal of Child Health Care, 2023, 31(2): 180-184. |
[11] | CAO Bing-bing, LIN Duo-hua, DU Pei-zhen, YAN Tao, CHENG Jian-ting. Correlation of various laboratory indicators and the expression level of inflammatory factors with neurodevelopment of newborns [J]. Chinese Journal of Child Health Care, 2023, 31(2): 205-209. |
[12] | PENG Rui, YUAN Hongmei. Effects of maternal anesthesia exposure during pregnancy on pregnancy outcome and neurodevelopment of offspring [J]. Chinese Journal of Child Health Care, 2023, 31(11): 1225-1229. |
[13] | CHEN Yu-xia, LIU Hua-yan, FAN Qian-qian. Changes of neuron specific enolase, transcutaneous hour bilirubin, total bilirubin/albumin levels in full-term infants with hyperbilirubinemia and their correlation with long-term neurodevelopment [J]. Chinese Journal of Child Health Care, 2023, 31(1): 86-90. |
[14] | WANG Hui-ping, WANG Li, GAO Qiong, BAI Bo-liang, MA Ying-jun. Physical and neurological development of necrotizing enterocolitis in very low birth weight infants [J]. Chinese Journal of Child Health Care, 2023, 31(1): 96-100. |
[15] | WANG Juan, ZONG Lu. Effects of exosomes derived from stem cells on the movement of premature rats [J]. Chinese Journal of Child Health Care, 2022, 30(5): 504-508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||