Chinese Journal of Child Health Care ›› 2024, Vol. 32 ›› Issue (11): 1236-1240.DOI: 10.11852/zgetbjzz2023-0646
• Review • Previous Articles Next Articles
LIN Duan, LIU Xiumei
Received:
2023-07-03
Revised:
2023-11-03
Online:
2024-11-10
Published:
2024-11-04
Contact:
LIU Xiumei, E-mail:xmliu0615@fjmu.edu.cn
林端, 刘秀梅
通讯作者:
刘秀梅,E-mail:xmliu0615@fjmu.edu.cn
作者简介:
林端(1988-),女,主治医师,硕士研究生,主要研究方向为发育行为儿科。
基金资助:
CLC Number:
LIN Duan, LIU Xiumei. Research progress on the role of histamine in the pathogenesis of tic disorder[J]. Chinese Journal of Child Health Care, 2024, 32(11): 1236-1240.
林端, 刘秀梅. 组胺在抽动障碍发病机制中的作用[J]. 中国儿童保健杂志, 2024, 32(11): 1236-1240.
Add to citation manager EndNote|Ris|BibTeX
[1] Deeb W, Malaty IA, Mathews CA. Tourette disorder and other tic disorders[M]//Handb Clin Neurol: 165. Elsevier, 2019: 123-153. [2] Liu ZS, Cui YH, Sun D, et al. Current status, diagnosis, and treatment recommendation for tic disorders in China[J]. Front Psychiatry, 2020, 11: 774. [3] Wang X, Liu X, Chen L, et al. The inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk involved in Tourette syndrome development[J]. Front Immunol, 2023, 14: 1178113. [4] Naro A, Billeri L, Colucci VP, et al. Brain functional connectivity in chronic tic disorders and Gilles de la Tourette syndrome[J]. Progress in Neurobiology, 2020, 194: 101884. [5] Qian QQ, Tan QQ, Sun D, et al. A pilot study on plasma and urine neurotransmitter levels in children with tic disorders[J]. Brain Sci, 2022, 12(7): 880. [6] Ercan-Sencicek AG, Stillman AA, Ghosh AK, et al. L-Histidine decarboxylase and Tourette's syndrome[J]. N Engl J Med, 2010, 362(20): 1901-1908. [7] Lintas C, Sacco R, Azzarà A, et.al. Genetic dysruption of the histaminergic pathways: A novel deletion at the 15q21.2 locus associated with variable expressivity of neuropsychiatric disorders[J]. Genes, 2022, 13(10): 1685. [8] Fernandez TV, Sanders SJ, Yurkiewicz IR, et al. Rare copy number variants in tourette syndrome disrupt genes in histaminergic pathways and overlap with autism[J]. Biol Psychiatry, 2012, 71(5): 392-402. [9] Rapanelli M, Frick L, Bito H, et al. Histamine modulation of the basal ganglia circuitry in the development of pathological grooming[J]. PNAS, 2017, 114(25): 6599-6604. [10] Castellan Baldan L, Williams KA, Gallezot JD, et al. Histidine decarboxylase deficiency causes Tourette syndrome: Parallel findings in humans and mice[J]. Neuron, 2014, 81(1): 77-90. [11] Rapanelli M, Frick LR, Pogorelov V, et al. Dysregulated intracellular signaling in the striatum in a pathophysiologically grounded model of Tourette syndrome[J]. Eur Neuropsychopharmacology, 2014, 24(12): 1896-1906. [12] Pittenger C. Histidine decarboxylase knockout mice as a model of the pathophysiology of Tourette syndrome and related conditions[M]//Handb Exp Pharmacol, 2017: 189-215. [13] Jindachomthong K, Yang C, Huang Y, et al. White matter abnormalities in the Hdc knockout mouse, a model of tic and OCD pathophysiology[J]. Front Mol Neurosci, 2022, 15:1037481. [14] Shitova AD, Zharikova TS, Kovaleva ON, et al. Tourette syndrome and obsessive-compulsive disorder: A comprehensive review of structural alterations and neurological mechanisms[J]. Behav Brain Res, 2023, 453:114606. [15] Jackson SR, Sigurdsson HP, Dyke K, et.al. The role of the cingulate cortex in the generation of motor tics and the experience of the premonitory urge-to-tic in Tourette syndrome[J]. J Neuropsychol, 2021,15(3):340-362. [16] Kalanithi PSA, Zheng W, Kataoka Y, et al. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome[J]. PNAS, 2005, 102(37): 13307-13312. [17] Liu H, Hua H, Kang T. White matter alterations predict outcomes of comprehensive behavioral intervention for tics in children with Tourette syndrome: A diffusion MRI study[J]. J Psychiatr Res, 2024,175:418-424. [18] Rapanelli M. The magnificent two: Histamine and the H3 receptor as key modulators of striatal circuitry[J]. Prog Neuro-Psychopharmacol Biol Psychiatry, 2017, 73: 36-40. [19] Ellender TJ, Huerta-Ocampo I, Deisseroth K, et al. Differential modulation of excitatory and inhibitory striatal synaptic transmission by histamine[J]. J Neurosci, 2011, 31(43): 15340-15351. [20] Zhuang QX, Xu HT, Lu XJ, et al. Histamine excites striatal dopamine D1 and D2 receptor-expressing neurons via postsynaptic H1 and H2 receptors[J]. Mol Neurobiol, 2018, 55(10): 8059-8070. [21] Xu J, Pittenger C. The histamine H3 receptor modulates dopamine D2 receptor-dependent signaling pathways and mouse behaviors[J]. J Biol Chem, 2023, 299(4):104583. [22] Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A review[J]. Front Neurosci, 2021,15:680214. [23] Han S, Márquez-Gómez R, Woodman M, et al. Histaminergic control of corticostriatal synaptic plasticity during early postnatal development[J]. J Neurosci, 2020, 40(34): 6557-6571. [24] Yu J, Yao X, Zhang X, et al. New insights of metabolite abnormalities in the thalamus of rats with iminodiproprionitrile-induced tic disorders[J].Front Neurosci, 2023, 17:1201294. [25] Augustine F, Singer HS. Merging the pathophysiology and pharmacotherapy of Tics[J]. Tremor and Other Hyperkinetic Movements, 2019, 8(0): 595. [26] Maia TV, Conceição VA. Dopaminergic disturbances in Tourette syndrome: An integrative account[J]. Biol Psychiatry, 2018, 84(5): 332-344. [27] Müller-Vahl KR, Berding G, Brücke T, et al. Dopamine transporter binding in Gilles de la Tourette syndrome[J]. J Neurol, 2000, 247(7): 514-520. [28] Anderson GM. Brain monoamines and amino acids in gilles de la Tourette's syndrome: A preliminary study of subcortical regions[J]. Arch Gen Psychiatry,1992, 49(7): 584. [29] Rapanelli M, Frick L, Pogorelov V, et al. Histamine H3R receptor activation in the dorsal striatum triggers stereotypies in a mouse model of tic disorders[J]. Transl Psychiatry,2017, 7(1): e1013-e1013. [30] Varaschin RK, Osterstock G, Ducrot C, et al. Histamine H3 receptors decrease dopamine release in the ventral striatum by reducing the activity of striatal cholinergic interneurons[J]. Neuroscience, 2018, 376: 188-203. [31] Venkatachalam K, Eissa N, Awad MA, et al. The histamine H3R and dopamine D2R/D3R antagonist ST-713 ameliorates autism-like behavioral features in BTBR T+tf/J mice by multiple actions[J]. Biomed Pharmacother, 2021, 138:111517. [32] Ma Q, Jiang L, Chen H, et al. Histamine H2 receptor deficit in glutamatergic neurons contributes to the pathogenesis of schizophrenia[J]. PNAS, 2023, 120(9): e2207003120. [33] Dere E, De Souza-Silva MA, Spieler RE, et al. Changes in motoric, exploratory and emotional behaviours and neuronal acetylcholine content and 5-HT turnover in histidine decarboxylase-KO mice[J]. Eur J Neurosci, 2004, 20(4): 1051-1058. [34] Pfanzagl B, Pfragner R, Jensen-Jarolim E. Histamine via histamine H1 receptor enhances the muscarinic receptor-induced calcium response to acetylcholine in an enterochromaffin cell model[J]. Clin Exp Pharmacol P, 2022, 49 (10): 1059-1071. [35] Nirogi R, Benade V, Daripelli S, et al. Samelisant (SUVN-G3031), a potent, selective and orally active histamine H3 receptor inverse agonist for the potential treatment of narcolepsy: Pharmacological and neurochemical characterisation[J]. Psychopharmacology, 2021, 238 (6): 1495-1511. [36] Johnson KA, Worbe Y, Foote KD, et al. Tourette syndrome: Clinical features, pathophysiology, and treatment[J]. Lancet Neurol, 2022, 22 (2): 147-158. [37] Kumar A, Williams MT, Chugani HT. Evaluation of basal ganglia and thalamic inflammation in children with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection and tourette syndrome: A positron emission tomographic(PET) study using11 C-[R]-PK11195[J]. J Child Neurol, 2015, 30(6): 749-756. [38] Yanhui C. Neuroinflammation in a rat model of Tourette Syndrome[J]. Front Behav Neurosci, 2022, 16. [39] Dong H, Wang Y, Zhang X, et al. Stabilization of brain mast cells alleviates LPS-induced neuroinflammation by inhibiting microglia activation[J]. Front Cell Neurosci, 2019, 13:191. [40] Barata-Antunes S, Cristóvão AC, Pires J, et al. Dual role of histamine on microglia-induced neurodegeneration[J].Bba-mol Basis Dis, 2017, 1863 (3): 764-769. [41] Frick L, Rapanelli M, Abbasi E, et al. Histamine regulation of microglia: Gene-environment interaction in the regulation of central nervous system inflammation[J]. Brain Behav Immun, 2016, 57: 326-337. [42] Zhang W, Zhang X, Zhang Y, et al. Histamine induces microglia activation and the release of proinflammatory mediators in rat brain via H1R or H4R[J]. J Neuroimmune Pharmacol, 2020, 15(2): 280-291. [43] Zhu J, Qu C, Lu X, et al. Activation of microglia by histamine and substance P[J]. Cell Physiol Biochem,2014, 34(3): 768-780. [44] Ferreira R, Santos T, Gonçalves J, et al. Histamine modulates microglia function[J]. J Neuroinflammation, 2012, 9: 90. [45] Olah M, Biber K, Vinet J, et al. Microglia phenotype diversity[J]. CNS Neurol Disord Drug Targets,2011,10(1): 108-118. [46] Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in physiology and disease[J]. Annu Rev Physiol, 2017, 79(1): 619-643. [47] Godar SC, Mosher LJ, Di Giovanni G, et al. Animal models of tic disorders: A translational perspective[J]. J Neurosci Meth, 2014, 238: 54-69. [48] Gober HJ, Li KH, Yan K, et al. Hydroxyzine use in preschool children and its effect on neurodevelopment: A population-based longitudinal study[J]. Front Psychiatry, 2022, 12: 721875. [49] Rapanelli M, Frick L, Jindachomthong K, et al. Striatal signaling regulated by the H3R histamine receptor in a mouse model of tic pathophysiology[J]. Neuroscience, 2018, 392: 172-179. [50] Wang J, Liu B, Sun F, et al. Histamine H3R antagonist counteracts the impaired hippocampal neurogenesis in Lipopolysaccharide-induced neuroinflammation[J]. Int Immunpharmacol, 2022, 110:109045. [51] Hartmann A, Worbe Y, Arnulf I. Increasing histamine neurotransmission in Gilles de la Tourette syndrome[J]. J Neurol, 2012, 259(2): 375-376. [52] Ricketts EJ, Swisher V, Greene DJ, et al. Sleep disturbance in Tourette's disorder: Potential underlying mechanisms[J]. Curr Sleep Med Rep, 2023, 9(1):10-22. [53] Pittenger C. The histidine decarboxylase model of tic pathophysiology:A new focus on the histamine H3 receptor[J]. Br J Pharmacol,2020, 177(3): 570-579. [54] Zhou P, Homberg JR, Fang Q, et al. Histamine-4 receptor antagonist JNJ7777120 inhibits pro-inflammatory microglia and prevents the progression of parkinson-like pathology and behaviour in a rat model[J]. Brain Behav Immun, 2019, 76: 61-73. |
[1] | YANG Feng. Communication disorders in children with autism spectrum disorder from speech language pathology perspective [J]. Chinese Journal of Child Health Care, 2024, 32(3): 233-236. |
[2] | TANG Yajun, LIU Xiumei. Research progress on dietary nutrition and intestinal flora in children with tic disorder [J]. Chinese Journal of Child Health Care, 2024, 32(11): 1232-1235. |
[3] | CHEN Yanhui, KE Zhongling. Psycho-behavioral intervention for tic disorder based on neurophysioloy [J]. Chinese Journal of Child Health Care, 2024, 32(10): 1045-1049. |
[4] | LU Yanting, CHEN Liangliang, LIU Xiumei. Mediating role of premonitory urge on the impact of comorbidity with attention-deficit/hyperactivity disorder on tic severity in children with tic disorder [J]. Chinese Journal of Child Health Care, 2024, 32(10): 1050-1054. |
[5] | ZHANG Panpan, ZHAO Tingting, XIAO Xuwu. Correlation between intestinal flora and tic disorder [J]. Chinese Journal of Child Health Care, 2024, 32(10): 1091-1096. |
[6] | QIU Jiaqi , ZHONG Xia, ZOU Shipu. Role of dopamine and its receptors in tic disorder in children [J]. Chinese Journal of Child Health Care, 2024, 32(10): 1097-1100. |
[7] | LI Zhonggui, WANG Haifei, HUANG Meilin, JING Jin. Cognitive impairments of children with tic disorder [J]. Chinese Journal of Child Health Care, 2024, 32(10): 1106-1110. |
[8] | CUI Pengyuan, LI Guiping. Causal relationship between neonatalhy perbilirubinemia and tic disorder by Mendelian randomization [J]. Chinese Journal of Child Health Care, 2024, 32(10): 1116-1121. |
[9] | JIANG Yanlin, WANG Junhong, LI Jialin, ZHAI Rui, JIANG Xiulei. Construction of a risk prediction scoring system for tic disorders in Chinese children based on Meta-analysis and external validation [J]. Chinese Journal of Child Health Care, 2024, 32(10): 1128-1134. |
[10] | JIANG Yanlin, ZHANG Qiang, ZHAI Rui, PENG Yaqi, TAI Ran, WANG Junhong. Systematic review of the prevalence and risk factors of tic disorders in Chinese children [J]. Chinese Journal of Child Health Care, 2023, 31(6): 661-667. |
[11] | JIANG Jilong, CHEN Yanhui, HUANG Huifang, HUANG Yuxian. Bioinformatics analysis of the regulation of miR-429 towards target genes in tic disorders [J]. Chinese Journal of Child Health Care, 2023, 31(3): 268-273. |
[12] | ZHANG Xiaoyue, GUO Lanmin, LI Qinghong, WANG Sijia, XING Xiao, LI Wenxia, WANG Jinfeng. Effects of ferulic acid on the behavior and expression of interleukin-1β, interleukin-6 and tumor necrosis factor-α in autistic model rats [J]. Chinese Journal of Child Health Care, 2023, 31(11): 1208-1213. |
[13] | YOU Hai-zhen, ZHOU Yi-fang, XIE Jing, JIN Zhi-juan, WANG Guang-hai, SUN Ke-xing. Correlation between serum vitamin D and tic disorder [J]. Chinese Journal of Child Health Care, 2022, 30(8): 904-907. |
[14] | XIE Shu, LIU Yu, LI De-xin, LI Ling, ZOU Ming-yang, SUN Cai-hong. Research progress in the regulation of endocannabinoid system on abnormal neuroinflammation in autism spectrum disorder [J]. Chinese Journal of Child Health Care, 2022, 30(4): 392-395. |
[15] | ZHANG Xiao-ling, LIU Xiu-mei. Research advances in immunopathological mechanism of Tourette syndrome [J]. Chinese Journal of Child Health Care, 2022, 30(4): 409-412. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||