Chinese Journal of Child Health Care ›› 2023, Vol. 31 ›› Issue (11): 1219-1224.DOI: 10.11852/zgetbjzz2022-1285
• Review • Previous Articles Next Articles
MA Hongfang, XUE Jiang, LIANG Shuang
Received:
2022-11-03
Revised:
2023-02-11
Online:
2023-11-10
Published:
2023-11-03
Contact:
XUE Jiang, E-mail: sdxj69@163.com
马红芳, 薛江, 梁爽
通讯作者:
薛江,E-mail: sdxj69@163.com
作者简介:
马红芳(1998-),女,甘肃人,硕士研究生在读,主要研究方向为新生儿及小儿内分泌。
基金资助:
CLC Number:
MA Hongfang, XUE Jiang, LIANG Shuang. Protective effect and mechanism of insulin-like growth factor 1 in preterm infants with white matter damage[J]. Chinese Journal of Child Health Care, 2023, 31(11): 1219-1224.
马红芳, 薛江, 梁爽. 胰岛素样生长因子-1对早产儿脑白质损伤的保护作用及其机制[J]. 中国儿童保健杂志, 2023, 31(11): 1219-1224.
Add to citation manager EndNote|Ris|BibTeX
[1] Walani S R.Global burden of preterm birth[J].Int J Gynaecol Obstet, 2020, 150(1):31-33. [2] Back SA.White matter injury in the preterm infant:pathology and mechanisms[J].Acta Neuropathol, 2017, 134(3):331-349. [3] Panfoli I, Candiano G, Malova M, et al.Oxidative stress as a primary risk factor for brain damage in preterm newborns[J].Front Pediatr, 2018, 6:369. [4] Guillen N, Llerena C, Samalvides S, et al.Risk of brain damage in premature infants under 34 weeks of gestational age exposed to histological chorioamnionitis Lima, peru[J].Rev Peru Med Exp Salud Publica, 2020, 37(2):229-238. [5] Huang X, Fu J.Associationbetween assisted reproductive technology and white matter injury in premature infants:a case-control study[J].Front Pediatr, 2021, 9:686670. [6] 岳艳,张莉,屈艺,等.少突胶质前体细胞移植对早产儿脑白质损伤的保护作用[J].中国当代儿科杂志,2018,20(4):326-331. Yue Y, Zhang L, Qu Y, et al.Neuroprotective effects of oligodendrocyte precursor cells on white matter damage in preterm infants[J].Chin J Contemp Pediatr, 2018, 20(4):326-331.(in Chinese) [7] Cai C, Ahmad T, Valencia GB, et al.Intermittent hypoxia suppression of growth hormone and insulin-like growth factor-I in the neonatal rat liver[J].Growth Horm IGF Res, 2018, 41:54-63. [8] Forbes BE, Blyth AJ, Wit JM.Disorders of IGFs and IGF-1R signaling pathways[J].Mol Cell Endocrinol, 2020, 518:111035. [9] Hellstrom W, Hortensius LM, Lofqvist C, et al.Postnatal serum IGF-1 levels associate with brain volumes at term in extremely preterm infants[J].Pediatr Res, 2022. [10] Torres-Cuevas I, Corral-Debrinski M, Gressens P.Brain oxidative damage in murine models of neonatal hypoxia/ischemia and reoxygenation[J].Free Radic Biol Med, 2019, 142:3-15. [11] Janowska J,Gargas J, Ziemka-Nalecz M, et al.Oligodendrocyte response to pathophysiological conditions triggered by episode of perinatal hypoxia-ischemia:Role of IGF-1 secretion by glial cells[J].Mol Neurobiol, 2020, 57(10):4250-4268. [12] Zhou J, Terluk MR, Basso L, et al.N-acetylcysteine provides cytoprotection in murine oligodendrocytes through heme oxygenase-1 activity[J].Biomedicines, 2020, 8(8):240. [13] Fern R, Matute C.Glutamate receptors and white matter stroke[J].Neurosci Lett, 2019, 694:86-92. [14] Ness JK, Scaduto RC Jr, Wood TL.IGF-I prevents glutamate-mediated bax translocation and cytochrome C release in O4+ oligodendrocyte progenitors[J].Glia, 2004, 46(2):183-194. [15] Simonishvili S, Jain MR, Li H, et al.Identification of Bax-interacting proteins in oligodendrocyte progenitors during glutamate excitotoxicity and perinatal hypoxia-ischemia[J].ASN Neuro, 2013, 5(5):e00131. [16] Zhao B, Zheng Z.Insulingrowth factor 1 protects neural stem cells against apoptosis induced by hypoxia through Akt/mitogen-activated protein Kinase/extracellular signal-regulated kinase (Akt/MAPK/ERK) pathway in hypoxia-ishchemic encephalopathy[J].Med Sci Monit, 2017, 23:1872-1879. [17] Shao R, Sun D, Hu Y, et al.White matter injury in the neonatal hypoxic-ischemic brain and potential therapies targeting microglia[J].J Neurosci Res, 2021, 99(4):991-1008. [18] Pierre WC, Londono I, Quiniou C, et al.Modulatory effect of IL-1 inhibition following lipopolysaccharide-induced neuroinflammation in neonatal microglia and astrocytes[J].Int J Dev Neurosci, 2022, 82(3):243-260. [19] Goshi N, Morgan RK, Lein PJ, et al.A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation[J].J Neuroinflammation, 2020, 17(1):155. [20] Pinto-Benito D, Paradela-Leal C, Ganchala D, et al.IGF-1 regulates astrocytic phagocytosis and inflammation through the p110alpha isoform of PI3K in a sex-specific manner[J].Glia, 2022, 70(6):1153-1169. [21] Zhou Y, Zhang J, Wang L, et al.Interleukin-1beta impedes oligodendrocyte progenitor cell recruitment and white matter repair following chronic cerebral hypoperfusion[J].Brain Behav Immun, 2017, 60:93-105. [22] Klevebro S, Hellgren G, Hansen-Pupp I, et al.Elevated levels of IL-6 and IGFBP-1 predict low serum IGF-1 levels during continuous infusion of rhIGF-1/rhIGFBP-3 in extremely preterm infants[J].Growth Horm IGF Res, 2020, 50:1-8. [23] Liddelow SA, Guttenplan KA, Clarke LE, et al.Neurotoxic reactive astrocytes are induced by activated microglia[J].Nature, 2017, 541(7638):481-487. [24] Breton JM, Long KLP, Barraza MK, et al.Hormonalregulation of oligodendrogenesis Ⅱ:Implications for myelin repair[J].Biomolecules, 2021, 11(2):290. [25] Li QY, Miao Q, Sui RX, et al.Ginkgolide K supports remyelination via induction of astrocytic IGF/PI3K/Nrf2 axis[J].Int Immunopharmacol, 2019, 75:105819. [26] Shi B, Ding J, Liu Y, et al.ERK1/2 pathway-mediated differentiation of IGF-1-transfected spinal cord-derived neural stem cells into oligodendrocytes[J].PLoS One,2014, 9(8):e106038. [27] Lorenzati M, Boda E, Parolisi R, et al.c-Jun N-terminal kinase 1 (JNK1) modulates oligodendrocyte progenitor cell architecture, proliferation and myelination[J].Sci Rep, 2021, 11(1):7264. [28] Min J, Singh S, Fitzgerald-Bocarsly P, et al. Insulin-like growth factor Ⅰ regulates G2/M progression through mammalian target of rapamycin signaling in oligodendrocyte progenitors[J]. Glia,2012,60(11):1684-95. [29] Bibollet-Bahena O, Almazan G.IGF-1-stimulated protein synthesis in oligodendrocyte progenitors requires PI3K/mTOR/Akt and MEK/ERK pathways[J].J Neurochem, 2009, 109(5):1440-1451. [30] Gonsalvez D, Ferner AH, Peckham H, et al.The roles of extracellular related-kinases 1 and 2 signaling in CNS myelination[J].Neuropharmacology, 2016, 110(Pt B):586-593. [31] Ishii A, Furusho M, Macklin W, et al.Independent and cooperative roles of the Mek/ERK1/2-MAPK and PI3K/Akt/mTOR pathways during developmental myelination and in adulthood[J].Glia, 2019, 67(7):1277-1295. [32] Wang H, Liu M, Ye Z, et al.Akt regulates sox10 expression to control oligodendrocyte differentiation via phosphorylating FoxO1[J].J Neurosci, 2021, 41(39):8163-8180. [33] Srivastava T, Diba P, Dean JM, et al.A TLR/AKT/FoxO3 immune tolerance-like pathway disrupts the repair capacity of oligodendrocyte progenitors[J].J Clin Invest, 2018, 128(5):2025-2041. [34] Liu X, Dong C, Liu K, et al.mTOR pathway repressing expression of FoxO3 is a potential mechanism involved in neonatal white matter dysplasia[J].Hum Mol Genet, 2022, 31(15):2508-2520. [35] Watamoto Y, Futawaka K, Hayashi M, et al.IGF-1 regulate the expression of uncoupling protein 2 via FOXO1[J].Growth Factors, 2019, 37(5-6):247-256. [36] Lin KN, Zhang K, Zhao W, et al.Insulin-like growth factor 1 promotes cell proliferation by downregulation of G-Protein-Coupled receptor 17 expression via PI3K/Akt/FoxO1 signaling in SK-N-SH cells[J].Int J Mol Sci, 2022, 23(3):1513. [37] Vaes JEG, Kosmeijer CM, Kaal M, et al.Regenerative therapies to restore interneuron disturbances in experimental models of encephalopathy of prematurity[J].Int J Mol Sci, 2020, 22(1):211. [38] Tien LT, Lee YJ, Pang Y, et al.Neuroprotective effects of intranasal IGF-1 against neonatal lipopolysaccharide-induced neurobehavioral deficits and neuronal inflammation in the substantia nigra and locus coeruleus of juvenile rats[J].Dev Neurosci, 2017, 39(6):443-459. [39] Chung JK,Hallberg B,Hansen-Pupp I,et al.Development and verification of a pharmacokinetic model to optimize physiologic replacement of rhIGF-1/rhIGFBP-3 in preterm infants[J].Pediatr Res, 2017, 81(3):504-510. [40] Hellstrom A, Ley D, Hallberg B, et al.IGF-1 as a drug for preterm infants:A step-wise clinical development[J].Curr Pharm Des, 2017, 23(38):5964-5970. [41] Lin S, Fan L-W, Pang Y, et al. IGF-1 protects oligodendrocyte progenitor cells and improves neurological functions following cerebral hypoxia-ischemia in the neonatal rat[J]. Brain Research, 2005, 1063(1): 15-26. [42] Lin S, Fan LW, Rhodes PG, et al. Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats[J]. Experimental neurology, 2009, 217(2): 361-370. [43] Hellgren G, Han W, Wang X, et al. Safety aspects of longitudinal administration of IGF-I/IGFBP-3 complex in neonatal mice[J]. Growth Horm IGF Res, 2011, 21(4):205-211. [44] Gram M,Ekstrom C, Holmqvist B, et al. Insulin-like growth factor 1 in the preterm rabbit pup:Characterization of cerebrovascular maturation following administration of recombinant human insulin-like growth factor 1/insulin-like growth factor 1-binding protein 3[J]. Dev Neurosci, 2021, 43(5):281-295. [45] Kalimuthu S, Oh JM, Gangadaran P, et al.Genetically engineered suicide gene in mesenchymal stem cells using a Tet-On system for anaplastic thyroid cancer[J].PLoS One, 2017, 12(7):e0181318. [46] Vaes JEG, Van Kammen CM, Trayford C, et al.Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity[J].Glia, 2021, 69(3):655-680. [47] Chen S, Wang T, Yao J, et al.Allopregnanolone promotes neuronal and oligodendrocyte differentiation in vitro and in vivo:Therapeutic implication for alzheimer′s disease[J].Neurotherapeutics, 2020, 17(4):1813-1824. [48] Gyetvai G, Hughes T, Wedmore F,et al.Erythropoietin increases myelination in oligodendrocytes:Gene expression profiling reveals early induction of genes involved in lipid transport and metabolism[J].Front Immunol, 2017, 8:1394. [49] Steinman G, Mankuta D.Molecular biology of autism′s etiology-an alternative mechanism[J].Med Hypotheses, 2019, 130:109272. |
[1] | WANG Yinfei, YIN Qin, ZENG Sijie, SUN Lei, YAN Qinhui, SHENG Xiaojing. Differences in exosome miRNAs in human breast milk between preterm and full-term infants [J]. Chinese Journal of Child Health Care, 2024, 32(4): 377-383. |
[2] | CHEN Die, PENG Wentao, TANG Mengyan, LIU Xiaomei. Status quo of preterm infants' feeding difficulties at weaning and self-feeding transition stage and its influencing factors [J]. Chinese Journal of Child Health Care, 2024, 32(1): 21-25. |
[3] | ZHANG Dan, ZHANG Jun, YANG Yurong, CAO Mi, YAN Jingmin, ZHU Luyang. Research advances on the correlation of gut microbiota with brain development and neurocognitive behavior in preterm infants [J]. Chinese Journal of Child Health Care, 2023, 31(7): 756-759. |
[4] | FENG Xiao, CHEN Ling, ZHAO Hongying, HUANG Rui, LIN Chenxi, ZHUANG Lijuan. Effects of different ways of umbilical cord milking on the outcome of very preterm infants [J]. Chinese Journal of Child Health Care, 2023, 31(7): 794-798. |
[5] | XIA Zhenglong, SONG Yanyan. Research progress in the neurodevelopment of preterm infants with bronchopulmonary dysplasia [J]. Chinese Journal of Child Health Care, 2023, 31(4): 390-394. |
[6] | LI Jinglan, SUN Wenqiang, ZHU Xueping. Research progress in the prediction model of bronchopulmonary dysplasia in preterm infants [J]. Chinese Journal of Child Health Care, 2023, 31(4): 395-398. |
[7] | REN Li, HEI Mingyan, QI Yujie, JIN Fei, WENG Jingwen, DONG Shixiao, SHEN Yanhua, JIANG Min. Influence of feeding factors on necrotizing enterocolitis in preterm neonates [J]. Chinese Journal of Child Health Care, 2023, 31(4): 438-441. |
[8] | CHEN Feng, ZHANG Yu. Retrospective study on the neuropsychological development of preterm multiple births and singleton births [J]. Chinese Journal of Child Health Care, 2023, 31(4): 451-456. |
[9] | YOU Fang. Application of individualized vitamin D supplementation in very preterm infants [J]. Chinese Journal of Child Health Care, 2023, 31(10): 1127-1131. |
[10] | CHEN Guo-ping, ZHAO Ying-xin. Research advances in the role of Toll-like receptor 4 in neonatal necrotizing enteroeolitis [J]. Chinese Journal of Child Health Care, 2022, 30(2): 167-171. |
[11] | JIN Xin-yun, ZHANG Xiao-li, WANG Yin-juan, LIU Jia-xin, WANG Xiao-yang, XU Fa-lin. Influencing factors of γδ-T cells in peripheral blood and its predictive value for outcomes in premature infants [J]. Chinese Journal of Child Health Care, 2022, 30(10): 1118-1122. |
[12] | ZHANG Mei, KUANG Xiao-ni, MIAO Dan, MA Qi, HUANG Guang-wen. Longitudinal study on the catch-up growth characteristics of preterm infants with different birth weight within 2 years of age [J]. Chinese Journal of Child Health Care, 2022, 30(10): 1136-1140. |
[13] | JIANG Wen, SUN Bin-bin, YANG Yu-lan, QU Xiao-li, HE Hui-jing, ZHANG Shi, ZENG Hui, WANG Hao. Quality of life of the extremely preterm infants within 2 years old [J]. Chinese Journal of Child Health Care, 2022, 30(10): 1144-1148. |
[14] | XIA Bin, WANG Jie, WANG Jie-yun, WANG Lan, YU Xiao-dan. Effects of early specialized management on the growth and development and the incidence of anemia of premature infants [J]. Chinese Journal of Child Health Care, 2021, 29(8): 894-897. |
[15] | ZHANG Tian, SUN Hai-ling, ZHANG Mei, BAN Bo, SUN Bing. Research progress on the undernutrition and growth hormone/insulin-like growth factor-1 with children [J]. Chinese Journal of Child Health Care, 2021, 29(7): 734-737. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||