中国儿童保健杂志 ›› 2025, Vol. 33 ›› Issue (10): 1082-1085.DOI: 10.11852/zgetbjzz2025-0302
高建芳1, 单小玉2, 郭锡熔1
收稿日期:2025-03-27
修回日期:2025-06-09
发布日期:2025-10-11
出版日期:2025-10-10
通讯作者:
郭锡熔,E-mail: xrguo@shsmu.edu.cn
作者简介:高建芳(1990—),女,硕士学位,主要研究方向为儿童肥胖和生长发育。
基金资助:GAO Jianfang1, SHAN Xiaoyu2, GUO Xirong1
Received:2025-03-27
Revised:2025-06-09
Online:2025-10-10
Published:2025-10-11
Contact:
GUO Xirong, E-mail: xrguo@shsmu.edu.cn
摘要: 基因表达不仅由编码序列决定,还受非编码区调控元件的调控。作为关键表观遗传因素,染色质三维结构的动态变化与疾病发生密切相关。三维基因组通过空间构象将远距离的启动子、增强子等顺式调控元件聚集,从而调控胰岛素分泌、脂肪细胞分化及能量代谢等关键通路中的基因表达。本文综述了染色质三维结构的基本特征及其在儿童代谢性疾病中的研究进展,重点探讨其在肥胖、糖尿病和非酒精性脂肪肝等疾病中的调控机制。通过了解染色质三维结构变化和基因调控之间的关系,从而更深入理解儿童代谢性疾病。
中图分类号:
高建芳, 单小玉, 郭锡熔. 染色质三维结构与基因调控网络在儿童代谢性疾病中的遗传学机制进展[J]. 中国儿童保健杂志, 2025, 33(10): 1082-1085.
GAO Jianfang, SHAN Xiaoyu, GUO Xirong. Progress in genetic mechanisms of chromatin 3D structure and gene regulatory networks in pediatric metabolic disorders[J]. Chinese Journal of Child Health Care, 2025, 33(10): 1082-1085.
| [1] Kerr JA, Patton GC,Cini KI, et al.Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990-2021, with forecasts to 2050: A forecasting study for the global burden of disease study 2021[J].Lancet, 2025, 405(10481): 785-812. [2] Huang Y,Sulek K, Stinson SE, et al.Lipid profiling identifies modifiable signatures of cardiometabolic risk in children and adolescents with obesity[J].Nat Med, 2025, 31(1): 294-305. [3] Ma G, Meyer CL, Jackson-Morris A, et al.The return on investment for the prevention and treatment of childhood and adolescent overweight and obesity in China: A modellingstudy[J].Lancet Reg Health West Pac, 2024, 43: 100977. [4] Han C, Song Q, Ren Y, et al.Global prevalence of prediabetes in children and adolescents: A systematic review and meta-analysis[J].J Diabetes, 2022, 14(7): 434-441. [5] Sethi JK, Hotamisligil GS.Metabolic messengers: Tumour necrosis factor[J].Nat Metab, 2021, 3(10): 1302-1312. [6] Zhou N, Qi H, Liu J, et al.Deubiquitinase OTUD3 regulates metabolism homeostasis in response to nutritional stresses[J].Cell Metab, 2022, 34(7): 1023-1041. [7] Huang T, Zhuang Z,Heianza Y, et al.Interaction of diet/lifestyle intervention and tcf7l2 genotype on glycemic control and adiposity among overweight or obese adults: Big data from seven randomized controlled trials worldwide[J].Health Data Sci, 2021, 2021: 9897048. [8] Krumm A, Duan Z.Understanding the 3D genome: Emerging impacts on human disease[J].Semin Cell Dev Biol, 2019, 90: 62-77. [9] Chew NWS, Ng CH, Tan DJH, et al.The global burden of metabolic disease: Data from 2000 to 2019[J].Cell Metab, 2023, 35(3): 414-428. [10] Barutcu AR, Lajoie BR, McCord RP, et al.Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells[J].Genome Biol, 2015, 16: 214. [11] Rao SSP, Huang SC, Glenn StHilaire B, et al.Cohesin loss eliminates all loop domains[J].Cell, 2017, 171(2): 305-320. [12] Hamagami N, Wu DY, Clemens AW, et al.NSD1 deposits histone H3 lysine 36 dimethylation to pattern non-CG DNA methylation in neurons[J].Mol Cell, 2023, 83(9): 1412-1428. [13] Zabidi MA, Stark A.Regulatory enhancer-core-promoter communication via transcription factors and cofactors[J].Trends Genet, 2016, 32(12): 801-814. [14] Yan W, Chen D, Schumacher J, et al.Dynamic control of enhancer activity drives stage-specific gene expression during flower morphogenesis[J].Nat Commun, 2019, 10(1): 1705. [15] Javierre BM, Burren OS, Wilder SP, et al.Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters[J].Cell, 2016, 167(5): 1369-1384. [16] Maurano MT, Humbert R, Rynes E, et al.Systematic localization of common disease-associated variation in regulatory DNA[J].Science, 2012, 337(6099): 1190-1195. [17] Bai F, Shu P, Deng H, et al.A distal enhancer guides the negative selection of toxicglycoalkaloids during tomato domestication[J].Nat Commun, 2024, 15(1): 2894. [18] Ma X, Mei S,Wuyun Q, et al.Super-enhancer-driven LncRNA PPARα-seRNA exacerbates glucolipid metabolism and diabetic cardiomyopathy via recruiting KDM4B[J].Mol Metab, 2024, 86: 101978. [19] Trang KB,Pahl MC, Pippin JA, et al.3D genomic features across >50 diverse cell types reveal insights into the genomic architecture of childhood obesity[J].medRxiv, 2024. [20] Pan DZ,Garske KM, Alvarez M, et al.Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS[J].Nat Commun, 2018, 9(1): 1512. [21] Qin Y, Grimm SA, Roberts JD, et al.Alterations in promoter interaction landscape and transcriptional network underlying metabolic adaptation to diet[J].Nat Commun, 2020, 11(1): 962. [22] Jin L, Wang D, Zhang J, et al.Dynamic chromatin architecture of the porcine adipose tissues with weight gain and loss[J].Nat Commun, 2023, 14(1): 3457. [23] Yan T, Yan N, Wang P, et al.Herbal drug discovery for the treatment of nonalcoholic fatty liver disease[J].Acta Pharm Sin B, 2020, 10(1): 3-18. [24] Xu L, Yin L, Qi Y, et al.3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C,Nanopore, and RNA sequencing[J].Acta Pharm Sin B, 2021, 11(10): 3150-3164. [25] Xue A, Wu Y, Zhu Z, et al.Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes[J].Nat Commun, 2018, 9(1): 2941. [26] Greenwald WW,Chiou J, Yan J, et al.Pancreatic islet chromatin accessibility and conformation reveals distal enhancer networks of type 2 diabetes risk[J].Nat Commun, 2019, 10(1): 2078. [27] Miguel-Escalada I, Bonàs-Guarch S, Cebola I, et al.Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes[J].Nat Genet, 2019, 51(7): 1137-1148. |
| [1] | 刘雪曼, Jill de Villiers. “语言-社交沟通-认知”三维度语言评估干预模式——心智解读理论在语言评估和干预中的临床应用[J]. 中国儿童保健杂志, 2025, 33(11): 1170-1178. |
| [2] | 静进. 汉语发展性阅读障碍研究新视角与评价[J]. 中国儿童保健杂志, 2025, 33(11): 1179-1185. |
| [3] | 姚梦梦, 徐蕖, 王秀红, 胡雯昕, 王晶宇, 洪琴, 池霞. 儿童语音意识评估量表的编制和信效度检验[J]. 中国儿童保健杂志, 2025, 33(11): 1186-1190. |
| [4] | 杨紫涵, 邓玉娇, 刘洁琼, 朱绮, 赵瑾, 张云婷, 王广海, 江帆. 学龄前儿童夜醒问题自然转归与情绪行为问题的关系研究[J]. 中国儿童保健杂志, 2025, 33(11): 1191-1195. |
| [5] | 郭乃绮, 储莉婷, 姚宇凯, 马晨欢, 陆丁杰, 李晓倩, 王瑜. 基于虚拟现实技术的康复训练对学龄前期孤独症谱系障碍儿童的疗效研究[J]. 中国儿童保健杂志, 2025, 33(11): 1201-1206. |
| [6] | 王子玥, 池霞. 汉语书面表达障碍评估工具的研究进展[J]. 中国儿童保健杂志, 2025, 33(11): 1223-1227. |
| [7] | 王琎, 沈珂馨, 陈洁, 丁媛. 孕期免疫激活致子代孤独症谱系障碍发生机制的研究进展[J]. 中国儿童保健杂志, 2025, 33(11): 1252-1255. |
| [8] | 陈碧兰, 刘潘婷, 孙钰英, 俞欣悦, 周佳, 李婷钰, 徐亚琴, 孟黎平, 张蕾, 钱君, 池霞, 洪琴. 120例典型发育学龄前儿童的言语声诱发听性脑干反应分析[J]. 中国儿童保健杂志, 2025, 33(11): 1256-1260. |
| [9] | 张莉莉, 尚莉丽, 崔何晴, 周冰原, 吴安琪. 基于孟德尔随机化研究分析炎性循环因子与抽动障碍发病风险的关系[J]. 中国儿童保健杂志, 2025, 33(11): 1261-1269. |
| [10] | 郭英英, 张涛, 井亚丽, 王静, 杨长虹, 马杜婷, 薛永新, 杨琳, 张静. 儿童抽动障碍的临床与多导睡眠监测分析[J]. 中国儿童保健杂志, 2025, 33(11): 1270-1274. |
| [11] | 吴琼, 穆立娟, 刘爱华, 张淑一, 殷妍, 宋国超, 吴燕, 赵苗青, 关宏岩, 张延峰, 杨玉凤, 朱宗涵, 张霆. 婴幼儿营养教学厨房建设与运行规范[J]. 中国儿童保健杂志, 2025, 33(10): 1045-1051. |
| [12] | 郭锡熔. 多系统交互网络视角下儿童肥胖相关代谢性疾病的免疫-代谢-力学三维机制解析[J]. 中国儿童保健杂志, 2025, 33(10): 1052-1055. |
| [13] | 张星星, 廖林英. 甲状腺激素抵抗综合征的识别及管理[J]. 中国儿童保健杂志, 2025, 33(10): 1056-1060. |
| [14] | 王佳丽, 张学红, 王文利, 胡晴雯, 徐健. 妊娠期夜间长期低剂量光污染对子代健康的影响[J]. 中国儿童保健杂志, 2025, 33(10): 1061-1065. |
| [15] | 詹舒敏, 傅君芬. 基底体相关蛋白复合体在儿童肥胖及其代谢性疾病中的作用机制[J]. 中国儿童保健杂志, 2025, 33(10): 1066-1069. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||