中国儿童保健杂志 ›› 2024, Vol. 32 ›› Issue (12): 1277-1281.DOI: 10.11852/zgetbjzz2024-1362
• 专家笔谈 • 下一篇
肖乐1,2, 叶小姗1
收稿日期:
2024-11-11
修回日期:
2024-11-15
发布日期:
2024-12-10
出版日期:
2024-12-10
通讯作者:
叶小姗,E-mail: 2000211367@muhn.edu.cn
作者简介:
肖乐(1980-),女,教授,博士学位,主要研究方向为儿童神经发育障碍性疾病。
基金资助:
XIAO Le1,2, YE Xiaoshan1
Received:
2024-11-11
Revised:
2024-11-15
Online:
2024-12-10
Published:
2024-12-10
Contact:
YE Xiaoshan, E-mail: 2000211367@muhn.edu.cn
摘要: 孤独症谱系障碍(ASD)是一种常见的儿童神经发育性疾病,其特征为社交沟通障碍和重复刻板行为,全球患病率持续上升。其病因复杂,涉及遗传和环境因素。本文系统总结了关于ASD神经病理机制的研究进展,包括突触功能、神经递质失衡、神经环路异常、神经解剖学变化以及神经炎症等。深入理解ASD的病理机制可为相关临床治疗策略的开发提供科学依据和指导。
中图分类号:
肖乐, 叶小姗. 重视孤独症谱系障碍发生的神经生物学机制[J]. 中国儿童保健杂志, 2024, 32(12): 1277-1281.
XIAO Le, YE Xiaoshan. Emphasizing the neurobiological mechanisms of autism spectrum disorder[J]. Chinese Journal of Child Health Care, 2024, 32(12): 1277-1281.
[1] 美国精神医学学会. 精神障碍诊断与统计手册[M].北京:北京大学出版社: 2015. [2] Hirota T, King BHJJ. Autism spectrum disorder: A review[J].JAMA,2023, 329(2): 157-168. [3] Grosvenor LP, Croen LA, Lynch FL, et al. Autism diagnosis among us children and adults, 2011-2022[J]. JAMA,2024, 7(10): e2442218-e. [4] Zhou H, Xu X, Yan W, et al. Prevalence of autism spectrum disorder in China: A nationwide multi-center population-based study among children aged 6 to 12 years[J].Neurosci Bull, 2020(36): 961-971. [5] Hansen SN, Schendel DE, Parner ETJJP. Explaining the increase in the prevalence of autism spectrum disorders: The proportion attributable to changes in reporting practices[J].JAMA Pediatr,2015,169(1): 56-62. [6] Zhuang H, Liang Z, Ma G, et al. Autism spectrum disorder: Pathogenesis, biomarker, and intervention therapy[J]. Med Comm, 2024, 5(3): e497. [7] Hansen SN, Schendel DE, Francis RW, et al. Recurrence risk of autism in siblings and cousins: A multinational, population-based study[J].J Am Acad Child Adolesc Psychiatry 2019, 58(9): 866-875. [8] Rosenberg RE, Law JK, Yenokyan G, et al.Characteristics and concordance of autism spectrum disorders among 277 twin pairs[J].Arch Pediatr Adolesc Med,2009, 163(10): 907-914. [9] Xiong J, Chen S, Pang N, et al. Neurological diseases with autism spectrum disorder: Role of ASD risk genes[J]. Nat Rev Neurosci, 2019(13): 349. [10] Bourgeron T.From the genetic architecture to synaptic plasticity in autism spectrum disorder[J].Nat Rev Neurosci,2015,16(9): 551-563. [11] Missler M, Südhof TC. Neurexins:Three genes and 1001 products[J]. Trends Genet, 1998, 14(1): 20-26. [12] Varghese M, Keshav N, Jacot-Descombes S, et al.Autism spectrum disorder: Neuropathology and animal models[J]. Acta Neuropathol, 2017,134(4): 537-566. [13] Kasem E, Kurihara T, Tabuchi K.Neurexins and neuropsychiatric disorders[J]. Neurosci Res,2018(127): 53-60. [14] Dachtler J, Ivorra JL, Rowland TE, et al.Heterozygous deletion of α-neurexin Ⅰ or α-neurexin Ⅱ results in behaviors relevant to autism and schizophrenia[J].Behavioral Neuroscience, 2015, 129(6): 765-776. [15] Ichtchenko K, Nguyen T, Südhof TC. Structures, alternative splicing, and neurexin binding of multiple neuroligins[J]. J Biol Chem, 1996, 271(5): 2676-2682. [16] Hörnberg H, Pérez-Garci E, Schreiner D, et al. Rescue of oxytocin response and social behaviour in a mouse model of autism[J]. Nature, 2020, 584(7820): 252-256. [17] Uchigashima M, Cheung A, Futai K. Neuroligin-3: A circuit-specific synapse organizer that shapes normal function and autism spectrum disorder-associated dysfunction[J]. Front Mol Neurosci, 2021, 14: 749164. [18] Tu JC, Xiao B, Naisbitt S, et al. Coupling of mGluR/Homer and PSD-95 complexes by the shank family of postsynaptic density proteins[J]. Neuron, 1999, 23(3): 583-592. [19] Orefice LL, Mosko JR, Morency DT, et al.Targeting peripheral somatosensory neurons to improve tactile-related phenotypes in ASD models [J]. Cell, 2019, 178(4): 867-886.e24. [20] De La Torre-Ubieta L, Won H, Stein JL, et al. Advancing the understanding of autism disease mechanisms through genetics[J]. Nat Med, 2016, 22(4): 345-361. [21] Bagni C, Zukin RS. A synaptic perspective of fragile X syndrome and autism spectrum disorders[J]. Neuron, 2019, 101(6): 1070-1088. [22] Bourgeron T. A synaptic trek to autism[J]. Curr Opin Neurobiol, 2009, 19(2): 231-234. [23] Yeung KS, Tso WWY, Ip JJK, et al.Identification of mutations in the PI3K-AKT-mTOR signalling pathway in patients with macrocephaly and developmental delay and/or autism[J].Mol Autism, 2017(8): 66. [24] Zhang J, Zhang JX, Zhang QL.PI3K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder[J]. Brain Res Bull, 2016(125): 152-158. [25] Neves-Pereira M, Müller B, Massie D, et al. Deregulation of EIF4E: A novel mechanism for autism[J]. J Med Genet, 2009, 46(11): 759-765. [26] Astorkia M, Liu Y, Pedrosa EM, et al. Molecular and network disruptions in neurodevelopment uncovered by single cell transcriptomics analysis of CHD8 heterozygous cerebral organoids[J]. Heliyon, 2024, 10(14): e34862. [27] Paulsen B, Velasco S, Kedaigle AJ, et al. Autism genes converge on asynchronous development of shared neuron classes[J]. Nature, 2022, 602(7896): 268-273. [28] Lord C, Brugha TS, Charman T, et al. Autism spectrum disorder[J]. Nat Rev Dis Primers, 2020, 6(1): 5. [29] Ye X, Zhou Q, Ren P, et al. The synaptic and circuit functions of vitamin d in neurodevelopment disorders[J]. Neuropsychiatr Dis Treat, 2023(19): 1515-1530. [30] Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders[J]. Neuron, 2015, 87(4): 684-698. [31] Zhang L, Huang CC, Dai Y, et al. Symptom improvement in children with autism spectrum disorder following bumetanide administration is associated with decreased GABA/glutamate ratios[J].Transl Psychiatry, 2020, 10(1): 9. [32] Yang JQ, Yang CH, Yin BQ. Combined the GABA-A and GABA-B receptor agonists attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism[J]. Behav Brain Res,2021(403): 113094. [33] Cox A, Kohls G, Naples AJ, et al. Diminished social reward anticipation in the broad autism phenotype as revealed by event-related brain potentials[J]. Soc Cogn Affect Neurosci, 2015, 10(10): 1357-1364. [34] Bartolotti J, Sweeney JA, Mosconi MW. Functional brain abnormalities associated with comorbid anxiety in autism spectrum disorder[J]. Dev Psychopathol, 2020, 32(4): 1273-1286. [35] Folkes OM, Báldi R, Kondev V, et al. An endocannabinoid-regulated basolateral amygdala-nucleus accumbens circuit modulates sociability[J].J Clin Invest,2020, 130(4): 1728-1742. [36] Krüttner S, Falasconi A, Valbuena S, et al. Absence of familiarity triggers hallmarks of autism in mouse model through aberrant tail-of-striatum and prelimbic cortex signaling[J].Neuron, 2022, 110(9): 1468-1482.e5. [37] Hazlett HC, Gu H, Munsell BC, et al. Early brain development in infants at high risk for autism spectrum disorder [J]. Nature, 2017, 542(7641): 348-351. [38] Sacco R, Gabriele S, Persico AM. Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis[J].Psychiatry Res, 2015, 234(2): 239-251. [39] Schumann CM, Bloss CS, Barnes CC, et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism[J].J Neurosci, 2010, 30(12): 4419-4427. [40] Courchesne E, Carper R, Akshoomoff N. Evidence of brain overgrowth in the first year of life in autism[J]. JAMA, 2003, 290(3): 337-344. [41] Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders [J]. Brain Res, 2010(1309): 83-94. [42] Prem S, Millonig JH, Dicicco-Bloom E. Dysregulation of neurite outgrowth and cell migration in autism and other neurodevelopmental disorders[J].Adv Neurobiol, 2020(25): 109-153. [43] Soiza-Reilly M, Commons KG. Unraveling the architecture of the dorsal raphe synaptic neuropil using high-resolution neuroanatomy[J]. Front Neural Circuits, 2014(8): 105. [44] Sun F, Chen Y, Gao Q, et al. Abnormal gray matter structure in children and adolescents with high-functioning autism spectrum disorder[J].Psychiatry Res Neuroimaging, 2022(327): 111564. [45] Fuster JM. The prefrontal cortex--an update: Time is of the essence[J]. Neuron, 2001,30(2): 319-333. [46] Gu X, Hof PR, Friston KJ, et al. Anterior insular cortex and emotional awareness[J]. J Comp Neurol, 2013, 521(15): 3371-388. [47] Hazlett HC, Poe MD, Gerig G, et al. Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years[J]. Arch Gen Psychiatry, 2011, 68(5): 467-476. [48] Halliday AR, Vucic SN, Georges B, et al. Heterogeneity and convergence across seven neuroimaging modalities: A review of the autism spectrum disorder literature[J]. Frontiers Psychiatry, 2024(15): 1474003. [49] Yang C, Wang XK, Ma SZ, et al. Abnormal functional connectivity of the reward network is associated with social communication impairments in autism spectrum disorder: A large-scale multi-site resting-state fMRI study[J]. J Affect Disord, 2024(347): 608-618. [50] Eilam-Stock T, Xu P, Cao M, et al. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder[J]. Brain, 2014, 137(Pt1): 153-171. [51] Fan J, Bernardi S, Van Dam NT, et al. Functional deficits of the attentional networks in autism[J]. Brain Behav, 2012, 2(5): 647-660. [52] He C, Chen Y, Jian T, et al. Dynamic functional connectivity analysis reveals decreased variability of the default-mode network in developing autistic brain[J]. Autism Res, 2018, 11(11): 1479-1493. [53] Frye RE, Cakir J, Rose S, et al. Mitochondria may mediate prenatal environmental influences in autism spectrum disorder[J]. J Pers Med, 2021, 11(3) :218. [54] Walter C, Marada A, Suhm T, et al. Global kinome profiling reveals DYRK1A as critical activator of the human mitochondrial import machinery[J]. Nat Commun,2021,12(1): 4284. [55] Lamanna J, Meldolesi J. Autism spectrum disorder: Brain areas involved, neurobiological mechanisms, diagnoses and therapies[J].Int J Mol Sci,2024,25(4):2423. [56] Henze K, Martin W. Evolutionary biology: Essence of mitochondria[J]. Nature, 2003, 426(6963): 127-128. [57] Gyllenhammer LE, Rasmussen JM, Bertele N, et al. Maternal inflammation during pregnancy and offspring brain development: The role of mitochondria[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(5): 498-509. [58] Allen M, Huang BS, Notaras MJ, et al. Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca(2+) signaling[J]. Molecular Psychiatry, 2022, 27(5): 2470-2484. [59] Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder[J]. Frontiers in Neuroscience, 2023(17): 1125428. [60] Kern JK, Geier DA, Sykes LK, et al. Relevance of neuroinflammation and encephalitis in autism[J].Front Cell Neurosci, 2015(9): 519. [61] Umpierre AD, Wu LJ. How microglia sense and regulate neuronal activity[J]. Glia, 2021, 69(7): 1637-1653. [62] Sarn N, Thacker S, Lee H, et al. Germline nuclear-predominant PTEN murine model exhibits impaired social and perseverative behavior, microglial activation, and increased oxytocinergic activity[J].Mol Autism, 2021, 12(1): 41. [63] Smith SE, Li J, Garbett K, et al. Maternal immune activation alters fetal brain development through interleukin-6[J].J Neurosci, 2007, 27(40): 10695-10702. [64] Rangel-Gomez M, Alberini CM, Deneen B, et al. Neuron-Glial interactions: Implications for plasticity, behavior, and cognition[J].J Neurosci, 2024, 44(40):e1231242024. [65] Broek JA, Guest PC, Rahmoune H, et al. Proteomic analysis of post mortem brain tissue from autism patients: Evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins[J].Mol Autism,2014(5):41. [66] Edmonson C, Ziats MN, Rennert OM. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum[J].Mol Autism,2014,5(1): 3. [67] Barón-Mendoza I, García O, Calvo-Ochoa E, et al. Alterations in neuronal cytoskeletal and astrocytic proteins content in the brain of the autistic-like mouse strain C58/J[J]. Neuroscience letters, 2018(682): 32-38. [68] Bronzuoli MR, Facchinetti R, Ingrassia D, et al. Neuroglia in the autistic brain: Evidence from a preclinical model[J]. Mol Autism,2018(9): 66. [69] Wang Q, Kong Y, Wu DY, et al.Impaired calcium signaling in astrocytes modulates autism spectrum disorder-like behaviors inmice[J].Nat Commun,2021,12(1): 3321. |
[1] | 李廷玉, 韦秋宏, 李燕, 魏华, 代英, 陈立. 养育照护融合家庭干预模式用于孤独症谱系障碍的实践与展望[J]. 中国儿童保健杂志, 2024, 32(9): 937-940. |
[2] | 静进. 孤独症谱系障碍“神经多样性”的观点及其评价[J]. 中国儿童保健杂志, 2024, 32(7): 709-712. |
[3] | 丛妍, 王浩, 王栋, 俞露婷, 朱晓春. 婴儿期运动发育指标在孤独症谱系障碍儿童筛查中的应用[J]. 中国儿童保健杂志, 2024, 32(7): 752-756. |
[4] | 张蓓, 王敏囡, 尼罗帕, 古丽加娜提·阿布拉克木, 克日曼·帕尔哈提, 何艳红, 阿曼古丽·卡德尔, 热娜·买买提. 产后早期免疫激活对小鼠孤独症样行为和胶质细胞的影响[J]. 中国儿童保健杂志, 2024, 32(4): 405-411. |
[5] | 杨峰. 从言语病理学角度看孤独症谱系障碍儿童的沟通障碍[J]. 中国儿童保健杂志, 2024, 32(3): 233-236. |
[6] | 王峰, 刘泽慧, 张艺霖, 田文茹, 杨凌渊, 邹明扬, 孙彩虹. 孤独症谱系障碍儿童外周血CNR1基因甲基化修饰水平的研究[J]. 中国儿童保健杂志, 2024, 32(3): 237-241. |
[7] | 侯耀奇, 宋湘勤. 运动干预改善孤独症谱系障碍儿童社会功能的研究进展[J]. 中国儿童保健杂志, 2024, 32(3): 291-295. |
[8] | 邹红, 朱健芳, 罗佳怡, 李丹丹, 吴迪. 孤独症谱系障碍的干预方法及发展趋势[J]. 中国儿童保健杂志, 2024, 32(3): 317-321. |
[9] | 蔚然, 孔锐, 关陆阳, 王永露, 叶侃. 益生菌对孤独谱系障碍患者核心症状干预效果的荟萃分析[J]. 中国儿童保健杂志, 2024, 32(3): 322-328. |
[10] | 胥柯, 周勤, 吴明磊, 宋丽, 柯晓燕. 孤独症谱系障碍儿童的饮食睡眠问题及相关因素[J]. 中国儿童保健杂志, 2024, 32(3): 329-333. |
[11] | 海洋, 金美钰, 张特, 崔禹, 武丽杰. 孤独症谱系障碍负担现状分析及趋势预测[J]. 中国儿童保健杂志, 2024, 32(12): 1349-1353. |
[12] | 黄天然, 刘姝娆, 张艳婷, 岑丽婷, 陆燕珍. 血清25-(OH)D和维生素B12水平与孤独症谱系障碍儿童病情特征的相关性[J]. 中国儿童保健杂志, 2024, 32(12): 1384-1388. |
[13] | 干凯滟, 黄安琪, 张子一, 关陆阳, 王菲, 柯晓燕. M-CHAT筛查阳性对孤独症谱系障碍早期诊断稳定性的前瞻性研究[J]. 中国儿童保健杂志, 2024, 32(10): 1076-1079. |
[14] | 杨帆, 李庆红, 李翌鸣, 杨顺波, 李威, 吕智海. 孤独症谱系障碍儿童屏幕使用现状及其与核心症状的相关性[J]. 中国儿童保健杂志, 2024, 32(10): 1080-1084. |
[15] | 静进. 孤独症谱系障碍的治疗干预现状与建议[J]. 中国儿童保健杂志, 2023, 31(9): 939-944. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||