中国儿童保健杂志 ›› 2024, Vol. 32 ›› Issue (12): 1277-1281.DOI: 10.11852/zgetbjzz2024-1362
• 专家笔谈 • 下一篇
肖乐1,2, 叶小姗1
收稿日期:
2024-11-11
修回日期:
2024-11-15
发布日期:
2024-12-10
出版日期:
2024-12-10
通讯作者:
叶小姗,E-mail: 2000211367@muhn.edu.cn
作者简介:
肖乐(1980-),女,教授,博士学位,主要研究方向为儿童神经发育障碍性疾病。
基金资助:
XIAO Le1,2, YE Xiaoshan1
Received:
2024-11-11
Revised:
2024-11-15
Online:
2024-12-10
Published:
2024-12-10
Contact:
YE Xiaoshan, E-mail: 2000211367@muhn.edu.cn
摘要: 孤独症谱系障碍(ASD)是一种常见的儿童神经发育性疾病,其特征为社交沟通障碍和重复刻板行为,全球患病率持续上升。其病因复杂,涉及遗传和环境因素。本文系统总结了关于ASD神经病理机制的研究进展,包括突触功能、神经递质失衡、神经环路异常、神经解剖学变化以及神经炎症等。深入理解ASD的病理机制可为相关临床治疗策略的开发提供科学依据和指导。
中图分类号:
肖乐, 叶小姗. 重视孤独症谱系障碍发生的神经生物学机制[J]. 中国儿童保健杂志, 2024, 32(12): 1277-1281.
XIAO Le, YE Xiaoshan. Emphasizing the neurobiological mechanisms of autism spectrum disorder[J]. Chinese Journal of Child Health Care, 2024, 32(12): 1277-1281.
[1] 美国精神医学学会. 精神障碍诊断与统计手册[M].北京:北京大学出版社: 2015. [2] Hirota T, King BHJJ. Autism spectrum disorder: A review[J].JAMA,2023, 329(2): 157-168. [3] Grosvenor LP, Croen LA, Lynch FL, et al. Autism diagnosis among us children and adults, 2011-2022[J]. JAMA,2024, 7(10): e2442218-e. [4] Zhou H, Xu X, Yan W, et al. Prevalence of autism spectrum disorder in China: A nationwide multi-center population-based study among children aged 6 to 12 years[J].Neurosci Bull, 2020(36): 961-971. [5] Hansen SN, Schendel DE, Parner ETJJP. Explaining the increase in the prevalence of autism spectrum disorders: The proportion attributable to changes in reporting practices[J].JAMA Pediatr,2015,169(1): 56-62. [6] Zhuang H, Liang Z, Ma G, et al. Autism spectrum disorder: Pathogenesis, biomarker, and intervention therapy[J]. Med Comm, 2024, 5(3): e497. [7] Hansen SN, Schendel DE, Francis RW, et al. Recurrence risk of autism in siblings and cousins: A multinational, population-based study[J].J Am Acad Child Adolesc Psychiatry 2019, 58(9): 866-875. [8] Rosenberg RE, Law JK, Yenokyan G, et al.Characteristics and concordance of autism spectrum disorders among 277 twin pairs[J].Arch Pediatr Adolesc Med,2009, 163(10): 907-914. [9] Xiong J, Chen S, Pang N, et al. Neurological diseases with autism spectrum disorder: Role of ASD risk genes[J]. Nat Rev Neurosci, 2019(13): 349. [10] Bourgeron T.From the genetic architecture to synaptic plasticity in autism spectrum disorder[J].Nat Rev Neurosci,2015,16(9): 551-563. [11] Missler M, Südhof TC. Neurexins:Three genes and 1001 products[J]. Trends Genet, 1998, 14(1): 20-26. [12] Varghese M, Keshav N, Jacot-Descombes S, et al.Autism spectrum disorder: Neuropathology and animal models[J]. Acta Neuropathol, 2017,134(4): 537-566. [13] Kasem E, Kurihara T, Tabuchi K.Neurexins and neuropsychiatric disorders[J]. Neurosci Res,2018(127): 53-60. [14] Dachtler J, Ivorra JL, Rowland TE, et al.Heterozygous deletion of α-neurexin Ⅰ or α-neurexin Ⅱ results in behaviors relevant to autism and schizophrenia[J].Behavioral Neuroscience, 2015, 129(6): 765-776. [15] Ichtchenko K, Nguyen T, Südhof TC. Structures, alternative splicing, and neurexin binding of multiple neuroligins[J]. J Biol Chem, 1996, 271(5): 2676-2682. [16] Hörnberg H, Pérez-Garci E, Schreiner D, et al. Rescue of oxytocin response and social behaviour in a mouse model of autism[J]. Nature, 2020, 584(7820): 252-256. [17] Uchigashima M, Cheung A, Futai K. Neuroligin-3: A circuit-specific synapse organizer that shapes normal function and autism spectrum disorder-associated dysfunction[J]. Front Mol Neurosci, 2021, 14: 749164. [18] Tu JC, Xiao B, Naisbitt S, et al. Coupling of mGluR/Homer and PSD-95 complexes by the shank family of postsynaptic density proteins[J]. Neuron, 1999, 23(3): 583-592. [19] Orefice LL, Mosko JR, Morency DT, et al.Targeting peripheral somatosensory neurons to improve tactile-related phenotypes in ASD models [J]. Cell, 2019, 178(4): 867-886.e24. [20] De La Torre-Ubieta L, Won H, Stein JL, et al. Advancing the understanding of autism disease mechanisms through genetics[J]. Nat Med, 2016, 22(4): 345-361. [21] Bagni C, Zukin RS. A synaptic perspective of fragile X syndrome and autism spectrum disorders[J]. Neuron, 2019, 101(6): 1070-1088. [22] Bourgeron T. A synaptic trek to autism[J]. Curr Opin Neurobiol, 2009, 19(2): 231-234. [23] Yeung KS, Tso WWY, Ip JJK, et al.Identification of mutations in the PI3K-AKT-mTOR signalling pathway in patients with macrocephaly and developmental delay and/or autism[J].Mol Autism, 2017(8): 66. [24] Zhang J, Zhang JX, Zhang QL.PI3K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder[J]. Brain Res Bull, 2016(125): 152-158. [25] Neves-Pereira M, Müller B, Massie D, et al. Deregulation of EIF4E: A novel mechanism for autism[J]. J Med Genet, 2009, 46(11): 759-765. [26] Astorkia M, Liu Y, Pedrosa EM, et al. Molecular and network disruptions in neurodevelopment uncovered by single cell transcriptomics analysis of CHD8 heterozygous cerebral organoids[J]. Heliyon, 2024, 10(14): e34862. [27] Paulsen B, Velasco S, Kedaigle AJ, et al. Autism genes converge on asynchronous development of shared neuron classes[J]. Nature, 2022, 602(7896): 268-273. [28] Lord C, Brugha TS, Charman T, et al. Autism spectrum disorder[J]. Nat Rev Dis Primers, 2020, 6(1): 5. [29] Ye X, Zhou Q, Ren P, et al. The synaptic and circuit functions of vitamin d in neurodevelopment disorders[J]. Neuropsychiatr Dis Treat, 2023(19): 1515-1530. [30] Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders[J]. Neuron, 2015, 87(4): 684-698. [31] Zhang L, Huang CC, Dai Y, et al. Symptom improvement in children with autism spectrum disorder following bumetanide administration is associated with decreased GABA/glutamate ratios[J].Transl Psychiatry, 2020, 10(1): 9. [32] Yang JQ, Yang CH, Yin BQ. Combined the GABA-A and GABA-B receptor agonists attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism[J]. Behav Brain Res,2021(403): 113094. [33] Cox A, Kohls G, Naples AJ, et al. Diminished social reward anticipation in the broad autism phenotype as revealed by event-related brain potentials[J]. Soc Cogn Affect Neurosci, 2015, 10(10): 1357-1364. [34] Bartolotti J, Sweeney JA, Mosconi MW. Functional brain abnormalities associated with comorbid anxiety in autism spectrum disorder[J]. Dev Psychopathol, 2020, 32(4): 1273-1286. [35] Folkes OM, Báldi R, Kondev V, et al. An endocannabinoid-regulated basolateral amygdala-nucleus accumbens circuit modulates sociability[J].J Clin Invest,2020, 130(4): 1728-1742. [36] Krüttner S, Falasconi A, Valbuena S, et al. Absence of familiarity triggers hallmarks of autism in mouse model through aberrant tail-of-striatum and prelimbic cortex signaling[J].Neuron, 2022, 110(9): 1468-1482.e5. [37] Hazlett HC, Gu H, Munsell BC, et al. Early brain development in infants at high risk for autism spectrum disorder [J]. Nature, 2017, 542(7641): 348-351. [38] Sacco R, Gabriele S, Persico AM. Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis[J].Psychiatry Res, 2015, 234(2): 239-251. [39] Schumann CM, Bloss CS, Barnes CC, et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism[J].J Neurosci, 2010, 30(12): 4419-4427. [40] Courchesne E, Carper R, Akshoomoff N. Evidence of brain overgrowth in the first year of life in autism[J]. JAMA, 2003, 290(3): 337-344. [41] Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders [J]. Brain Res, 2010(1309): 83-94. [42] Prem S, Millonig JH, Dicicco-Bloom E. Dysregulation of neurite outgrowth and cell migration in autism and other neurodevelopmental disorders[J].Adv Neurobiol, 2020(25): 109-153. [43] Soiza-Reilly M, Commons KG. Unraveling the architecture of the dorsal raphe synaptic neuropil using high-resolution neuroanatomy[J]. Front Neural Circuits, 2014(8): 105. [44] Sun F, Chen Y, Gao Q, et al. Abnormal gray matter structure in children and adolescents with high-functioning autism spectrum disorder[J].Psychiatry Res Neuroimaging, 2022(327): 111564. [45] Fuster JM. The prefrontal cortex--an update: Time is of the essence[J]. Neuron, 2001,30(2): 319-333. [46] Gu X, Hof PR, Friston KJ, et al. Anterior insular cortex and emotional awareness[J]. J Comp Neurol, 2013, 521(15): 3371-388. [47] Hazlett HC, Poe MD, Gerig G, et al. Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years[J]. Arch Gen Psychiatry, 2011, 68(5): 467-476. [48] Halliday AR, Vucic SN, Georges B, et al. Heterogeneity and convergence across seven neuroimaging modalities: A review of the autism spectrum disorder literature[J]. Frontiers Psychiatry, 2024(15): 1474003. [49] Yang C, Wang XK, Ma SZ, et al. Abnormal functional connectivity of the reward network is associated with social communication impairments in autism spectrum disorder: A large-scale multi-site resting-state fMRI study[J]. J Affect Disord, 2024(347): 608-618. [50] Eilam-Stock T, Xu P, Cao M, et al. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder[J]. Brain, 2014, 137(Pt1): 153-171. [51] Fan J, Bernardi S, Van Dam NT, et al. Functional deficits of the attentional networks in autism[J]. Brain Behav, 2012, 2(5): 647-660. [52] He C, Chen Y, Jian T, et al. Dynamic functional connectivity analysis reveals decreased variability of the default-mode network in developing autistic brain[J]. Autism Res, 2018, 11(11): 1479-1493. [53] Frye RE, Cakir J, Rose S, et al. Mitochondria may mediate prenatal environmental influences in autism spectrum disorder[J]. J Pers Med, 2021, 11(3) :218. [54] Walter C, Marada A, Suhm T, et al. Global kinome profiling reveals DYRK1A as critical activator of the human mitochondrial import machinery[J]. Nat Commun,2021,12(1): 4284. [55] Lamanna J, Meldolesi J. Autism spectrum disorder: Brain areas involved, neurobiological mechanisms, diagnoses and therapies[J].Int J Mol Sci,2024,25(4):2423. [56] Henze K, Martin W. Evolutionary biology: Essence of mitochondria[J]. Nature, 2003, 426(6963): 127-128. [57] Gyllenhammer LE, Rasmussen JM, Bertele N, et al. Maternal inflammation during pregnancy and offspring brain development: The role of mitochondria[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(5): 498-509. [58] Allen M, Huang BS, Notaras MJ, et al. Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca(2+) signaling[J]. Molecular Psychiatry, 2022, 27(5): 2470-2484. [59] Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder[J]. Frontiers in Neuroscience, 2023(17): 1125428. [60] Kern JK, Geier DA, Sykes LK, et al. Relevance of neuroinflammation and encephalitis in autism[J].Front Cell Neurosci, 2015(9): 519. [61] Umpierre AD, Wu LJ. How microglia sense and regulate neuronal activity[J]. Glia, 2021, 69(7): 1637-1653. [62] Sarn N, Thacker S, Lee H, et al. Germline nuclear-predominant PTEN murine model exhibits impaired social and perseverative behavior, microglial activation, and increased oxytocinergic activity[J].Mol Autism, 2021, 12(1): 41. [63] Smith SE, Li J, Garbett K, et al. Maternal immune activation alters fetal brain development through interleukin-6[J].J Neurosci, 2007, 27(40): 10695-10702. [64] Rangel-Gomez M, Alberini CM, Deneen B, et al. Neuron-Glial interactions: Implications for plasticity, behavior, and cognition[J].J Neurosci, 2024, 44(40):e1231242024. [65] Broek JA, Guest PC, Rahmoune H, et al. Proteomic analysis of post mortem brain tissue from autism patients: Evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins[J].Mol Autism,2014(5):41. [66] Edmonson C, Ziats MN, Rennert OM. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum[J].Mol Autism,2014,5(1): 3. [67] Barón-Mendoza I, García O, Calvo-Ochoa E, et al. Alterations in neuronal cytoskeletal and astrocytic proteins content in the brain of the autistic-like mouse strain C58/J[J]. Neuroscience letters, 2018(682): 32-38. [68] Bronzuoli MR, Facchinetti R, Ingrassia D, et al. Neuroglia in the autistic brain: Evidence from a preclinical model[J]. Mol Autism,2018(9): 66. [69] Wang Q, Kong Y, Wu DY, et al.Impaired calcium signaling in astrocytes modulates autism spectrum disorder-like behaviors inmice[J].Nat Commun,2021,12(1): 3321. |
[1] | 汪瑜, 李妍, 朱绘霖, 曹伟, 邹小兵. 具有学者技能的孤独症谱系障碍儿童认知行为特征的初步研究[J]. 中国儿童保健杂志, 2025, 33(7): 702-706. |
[2] | 姜含笑, 乔艺, 屈艳琳. 肠道菌群与注意缺陷多动障碍和孤独症谱系障碍的孟德尔随机化分析[J]. 中国儿童保健杂志, 2025, 33(7): 707-714. |
[3] | 王飞英, 秦宏超, 陶小冬, 瞿秋婵, 倪勇, 许占斌. 孤独症谱系障碍儿童超重/肥胖现况及其与情绪行为问题的相关性[J]. 中国儿童保健杂志, 2025, 33(7): 729-732. |
[4] | 靳少举, 李艳, 徐胜. 孤独症谱系障碍儿童情绪失调的国外研究进展[J]. 中国儿童保健杂志, 2025, 33(7): 755-759. |
[5] | 凌梅, 汪月红, 李娜, 熊玉红, 杨舒, 徐桂凤. 孤独症谱系障碍微生物-肠-脑轴研究进展[J]. 中国儿童保健杂志, 2025, 33(7): 778-782. |
[6] | 李诺, 周园, 钱旭光, 刘振寰, 庞碧徽, 徐立宝, 姚向歌, 赵勇. 超低频经颅磁刺激治疗儿童孤独症谱系障碍合并睡眠障碍的临床研究[J]. 中国儿童保健杂志, 2025, 33(7): 790-795. |
[7] | 徐海萍, 丁丹丹, 朱义如, 杜晓艳, 黄丽洁, 张雪琴, 代晶晶. 基于行为转变理论的营养健康教育对孤独症谱系障碍儿童饮食行为干预效果研究[J]. 中国儿童保健杂志, 2025, 33(7): 807-812. |
[8] | 中国妇幼保健协会儿童自闭症防治专委会, 《中国儿童保健杂志》编委会. 孤独症谱系障碍防治三级网络规范化建设专家共识[J]. 中国儿童保健杂志, 2025, 33(6): 581-589. |
[9] | 张林, 张建平, 江才明, 邵智. 基于功能性近红外光谱的学龄前孤独症谱系障碍儿童脑功能特征研究[J]. 中国儿童保健杂志, 2025, 33(6): 597-602. |
[10] | 王玲, 吕莹, 李秋菊. 不同性别和年龄孤独症谱系障碍儿童发育水平及症状严重程度分析[J]. 中国儿童保健杂志, 2025, 33(6): 619-622. |
[11] | 祖姆热提·伊敏, 热娜·买买提, 王敏囡. 孤独症谱系障碍儿童肠道菌群变化及作用机制[J]. 中国儿童保健杂志, 2025, 33(6): 638-642. |
[12] | 刘银花, 廖子菁, 顾颖, 戴冬梅, 任彩玲, 张峰. 家庭共同活动框架游戏对孤独症谱系障碍幼儿的疗效分析[J]. 中国儿童保健杂志, 2025, 33(6): 671-674. |
[13] | 徐海萍, 朱义如, 丁丹丹, 杜晓艳, 张雪琴, 李雪函, 王转利, 胡亚文. 孤独症谱系障碍儿童日常生活技能的研究进展[J]. 中国儿童保健杂志, 2025, 33(4): 421-425. |
[14] | 程义超, 史佳欣, 王佳城, 姜志梅. 认知行为疗法对改善孤独症谱系障碍儿童焦虑症状的Meta分析[J]. 中国儿童保健杂志, 2025, 33(4): 431-438. |
[15] | 杨逸凡, 肖雪斌, 谭亚飞, 王仕琼, 李瑞珍, 贾美香. 孤独症谱系障碍和发育性语言障碍儿童发育水平的差异研究[J]. 中国儿童保健杂志, 2025, 33(4): 451-455. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||