[1] Yang Y, Shi G, Ge Y, et al.Accumulated BCAAs and BCKAs contribute to the HFD-induced deterioration of Alzheimer's disease via a dysfunctional TREM2-related reduction in microglial β-amyloid clearance[J].J Neuroinflammation, 2024, 21(1):327. [2] Mahendran Y, Jonsson A, Have CT, et al.Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels[J].Diabetologia, 2017, 60 (5):873-878. [3] Ferguson D, Eichler SJ, Yiew NKH, et al.Mitochondrial pyruvate carrier inhibition initiates metabolic crosstalk to stimulate branched chain amino acid catabolism[J].Mol Metab, 2023, 70:101694. [4] Palmer ND, Stevens RD, Antinozzi PA, et al.Metabolomic profile associated with insulin resistance and conversion to diabetes in the insulin resistance atherosclerosis study[J].J Clin Endocrinol Metab, 2015, 100(3):e463-e468. [5] Wang Q, Holmes MV, Davey Smith G, et al.Genetic support for a causal role of insulin resistance on circulating branched-chain amino acids and inflammation[J].Diabetes Care, 2017, 40(12):1779-1786. [6] Zhang Z, Wang J, Yu B, et al.Accelerated biological aging, mediating amino acids, and risk of incident type 2 diabetes: A prospective cohort study[J].J Endocrinol Invest, 2025, 48(2):435-443. [7] Fang X, Miao R, Wei J, et al.Advances in multi-omics study of biomarkers of glycolipid metabolism disorder[J].Comput Struct Biotechnol J, 2022, 20:5935-5951. [8] Zhao H, Zhang F, Sun D, et al.Branched-chain amino acids exacerbate obesity-related hepatic glucose and lipid metabolic disorders via attenuating Akt2 signaling[J].Diabetes, 2020, 69(6):1164-1177. [9] Chen J, Zhou Y, Liu Z, et al.Hepatic glycogenesis antagonizes lipogenesis by blocking S1P via UDPG[J].Science, 2024, 383(6684):eadi3332. [10] Liao Y, Chen Q, Liu L, et al.Amino acid is a major carbon source for hepatic lipogenesis[J].Cell Metab, 2024, 36(11):2437-2448.e8. [11] Xiao F, Huang Z, Li H, et al.Leucine deprivation increases hepatic insulin sensitivity via GCN2/mTOR/S6K1 and AMPK pathways[J].Diabetes, 2011, 60(3):746-756. [12] Xiao F, Yu J, Guo Y, et al.Effects of individual branched-chain amino acids deprivation on insulin sensitivity and glucose metabolism in mice[J].Metabolism, 2014, 63(6):841-850. [13] Selen ES, Wolfgang MJ.mTORC1 activation is not sufficient to suppress hepatic PPARα signaling or ketogenesis[J].J Biol Chem, 2021, 297(1):100884. [14] Xu X, Hu J, McGrath BC, et al.GCN2 regulates the CCAAT enhancer binding protein beta and hepatic gluconeogenesis[J].Am J Physiol Endocrinol Metab, 2013,305(8):e1007-e1017. [15] Zhao C, Liu L, Liu Q, et al.Fibroblast growth factor 21 is required for the therapeutic effects of lactobacillus rhamnosus GG against fructose-induced fatty liver in mice[J].Mol Metab, 2019, 29:145-157. [16] Pi D, Liang Z, Pan J, et al.Tanshinone IIA inhibits the endoplasmic reticulum stress-induced unfolded protein response by activating the PPARα/FGF21 axis to ameliorate nonalcoholic steatohepatitis[J].Antioxidants (Basel), 2024, 13(9):1026. [17] Ye X, Sun P, Lao S, et al.Fgf21-Dubosiella axis mediates the protective effects of exercise against NAFLD development[J].Life Sci, 2023, 334:122231. [18] Yu D, Richardson NE, Green CL, et al.The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine[J].Cell Metab, 2021, 33(5):905-922.e6. [19] Ma N, Wang YK, Xu S, et al.PPDPF alleviates hepatic steatosis through inhibition of mTOR signaling[J].Nat Commun, 2021, 12(1): 3059. [20] Yan XL, Pan YH, Fan RZ, et al.discovery of the first raptor (Regulatory-Associated Protein of mTOR) inhibitor as a new type of antiadipogenic agent[J].J Med Chem, 2023, 66(8):5839-5858. [21] Mazor KM, Stipanuk MH.GCN2-and eIF2α-phosphorylation-independent, but ATF4-dependent, induction of CARE-containing genes in methionine-deficient cells[J].Amino Acids, 2016, 48(12):2831-2842. [22] Liu S, Yuan J, Yue W, et al.GCN2 deficiency protects against high fat diet induced hepatic steatosis and insulin resistance in mice[J].Biochim Biophys Acta Mol Basis Dis, 2018, 1864(10):3257-3267. [23] Yuan J, Li F, Shen X, et al.Genetic and pharmacological inhibition of GCN2 ameliorates hyperglycemia and insulin resistance in type 2 diabetic mice[J].Antioxidants (Basel), 2022, 11(8):1584. [24] Batch BC, Shah SH, Newgard CB, et al.Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness[J].Metabolism, 2013, 62(7):961-969. [25] Ni Y, Qian L, Siliceo SL, et al.Resistant starch decreases intrahepatic triglycerides in patients with NAFLD via gut microbiome alterations[J].Cell Metab, 2023, 35(9):1530-1547.e8. [26] Beppu T, Nitta H, Hayashi H, et al.Effect of branched-chain amino acid supplementation on functional liver regeneration in patients undergoing portal vein embolization and sequential hepatectomy: A randomized controlled trial[J].J Gastroenterol, 2015, 50(12):1197-205. [27] Magkos F, Bradley D, Schweitzer GG, et al.Effect of Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding on branched-chain amino acid metabolism[J].Diabetes, 2013, 62(8):2757-2761. [28] Yu G, Wang J, Liu Y, et al.Metabolic perturbations in pregnant rats exposed to low-dose perfluorooctanesulfonic acid: An integrated multi-omics analysis[J].Environ Int, 2023, 173:107851. [29] Mannick JB, Lamming DW.Targeting the biology of aging with mTOR inhibitors[J].Nat Aging, 2023, 3(6):642-660. [30] Krishnan S, Ding Y, Saedi N, et al.Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages[J].Cell Rep, 2018, 23(4):1099-1111. [31] Zhou M, Shao J, Wu CY, et al.Targeting BCAA catabolism to treat obesity-associated insulin resistance[J].Diabetes, 2019, 68(9):1730-1746. [32] Tedesco L, Corsetti G, Ruocco C, et al.A specific amino acid formula prevents alcoholic liver disease in rodents[J].Am J Physiol Gastrointest Liver Physiol, 2018, 314(5):G566-G582. [33] Ge MK, Zhang C, Zhang N, et al.The tRNA-GCN2-FBXO22-axis-mediated mTOR ubiquitination senses amino acid insufficiency[J].Cell Metab, 2023, 35(12):2216-2230.e8. |