[1] Pan X, Wang L, Pan A. Epidemiology and determinants of obesity in China[J]. Lancet Diabetes Endocrinol, 2021, 9(6): 373-392. [2] 马冠生,米杰,马军. 中国儿童肥胖报告[M].北京:人民卫生出版社,2017. [3] 任向楠, 梁琼麟. 基于质谱分析的代谢组学研究进展[J]. 分析测试学报, 2017, 36(2): 161-169. [4] Singh A, Kinnebrew G, Hsu PC, et al. Untargeted metabolomics and body mass in adolescents:A cross-sectional and longitudinal analysis[J]. Metabolites, 2023, 13(8): 899. [5] Yu X, Dong J, Xiang S, et al. Association of intestinal microbiota and its metabolite markers with excess weight in Chinese children and adolescents[J]. Pediatr Obes, 2023, 18(6): e13019. [6] Martínez-Rodríguez A, Martínez-Olcina M, Mora J, et al. Anxiolytic effect and improved sleep quality in individuals taking lippia citriodora extract[J]. Nutrients, 2022, 14(1): 218. [7] Troisi J, Pierri L, Landolfi A, et al. Urinary metabolomics in pediatric obesity and NAFLD identifies metabolic pathways/metabolites related to dietary habits and gut-liver axis perturbations[J]. Nutrients, 2017, 9(5): 485. [8] Wu J, Li Z, Zhu H, et al. Childhood overweight and obesity: age stratification contributes to the differences in metabolic characteristics[J]. Obesity (Silver Spring), 2024, 32(3): 571-82. [9] Tong L, Tian M, Ma X, et al. Metabolome profiling and pathway analysis in metabolically healthy and unhealthy obesity among Chinese adolescents aged 11-18 years[J]. Metabolites, 2023, 13(5): 641. [10] Kerling EH, Hilton JM, Thodosoff JM, et al. Effect of prenatal docosahexaenoic acid supplementation on blood pressure in children with overweight condition or obesity:A secondary analysis of a randomized clinical trial[J]. JAMA Netw Open, 2019, 2(2): e190088. [11] Lee Y, Cho JY, Cho KY. Serum, urine, and fecal metabolome alterations in the gut microbiota in response to lifestyle interventions in pediatric obesity: A non-randomized clinical trial[J]. Nutrients, 2023, 15(9): 2184. [12] Soria-Gondek A, Fernández-García P, González L, et al. Lipidome profiling in childhood obesity compared to adults: A pilot study[J]. Nutrients, 2023, 15(15): 3341. [13] Lau CHE, Siskos AP, Maitre L, et al. Determinants of the urinary and serum metabolome in children from six European populations[J]. Bmc Medicine, 2018, 16(1): 202. [14] Wahl S, Holzapfel C, Yu ZH, et al. Metabolomics reveals determinants of weight loss during lifestyle intervention in obese children[J]. Metabolomics, 2013, 9(6): 1157-1167. [15] Lee A, Jang HB, Ra M, et al. Prediction of future risk of insulin resistance and metabolic syndrome based on Korean boy's metabolite profiling[J]. Obes Res Clin Pract, 2015, 9(4): 336-345. [16] Hellmuth C, Kirchberg FF, Brandt S, et al. An individual participant data meta-analysis on metabolomics profiles for obesity and insulin resistance in European children[J]. Sci Rep, 2019, 9(1): 5053. [17] Hollie NI, Cash JG, Matlib MA, et al. Micromolar changes in lysophosphatidylcholine concentration cause minor effects on mitochondrial permeability but major alterations in function[J]. Biochim Biophys Acta, 2014, 1841(6): 888-895. [18] Mann JP, Jenkins B, Furse S, et al. Comparison of the lipidomic signature of fatty liver in children and adults: A cross-sectional study[J]. J Pediatr Gastroenterol Nutr, 2022, 74(6): 734-741. [19] Syme C, Czajkowski S, Shin J, et al. Glycerophosphocholine metabolites and cardiovascular disease risk factors in adolescents a cohort study[J]. Circulation, 2016, 134(21): 1629-1636. [20] López-Contreras BE, Morán-Ramos S, Villarruel-Vázquez R, et al. Composition of gut microbiota in obese and normal-weight Mexican school-age children and its association with metabolic traits[J]. Pediatr Obes, 2018, 13(6): 381-388. [21] Olson E, Suh JH, Schwarz JM, et al. Effects of isocaloric fructose restriction on ceramide levels in children with obesity and cardiometabolic risk: Relation to hepatic De Novo lipogenesis and insulin sensitivity[J]. Nutrients, 2022, 14(7): 1432. [22] Yoon H, Shaw JL, Haigis MC, et al. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity[J]. Mol Cell, 2021, 81(18): 3708-3730. [23] Butte NF, Liu Y, Zakeri IF, et al. Global metabolomic profiling targeting childhood obesity in the Hispanic population[J]. Am J Clin Nutr, 2015, 102(2): 256-67. [24] Pitchika A, Jolink M, Winkler C, et al. Associations of maternal type 1 diabetes with childhood adiposity and metabolic health in the offspring: A prospective cohort study[J]. Diabetologia, 2018, 61(11): 2319-2332. [25] Hirschel J, Vogel M, Baber R, et al. Relation of whole blood amino acid and acylcarnitine metabolome to age, sex, BMI, puberty, and metabolic markers in children and adolescents[J]. Metabolites, 2020, 10(4): 149. [26] Moran-Ramos S, Ocampo-Medina E, Gutierrez-Aguilar R, et al. An amino acid signature associated with obesity predicts 2-year risk of hypertriglyceridemia in school-age children[J]. Sci Rep, 2017, 7(1): 5607. [27] Handakas E, Keski-Rahkonen P, Chatzi L, et al. Cord blood metabolic signatures predictive of childhood overweight and rapid growth[J]. Int J Obes (Lond), 2021, 45(10): 2252-2260. [28] Perng W, Gillman MW, Fleisch AF, et al. Metabolomic profiles and childhood obesity[J]. Obesity, 2014, 22(12): 2570-2578. [29] Mauras N, Santen RJ, Colón-Otero G, et al. Estrogens and their genotoxic metabolites are increased in obese prepubertal girls[J]. J Clin Endocrinol Metab, 2015, 100(6): 2322-2328. [30] Lee SH, Kim SH, Lee WY, et al. Metabolite profiling of sex developmental steroid conjugates reveals an association between decreased levels of steroid sulfates and adiposity in obese girls[J]. J Steroid Biochem Mol Biol, 2016, 162: 100-109. [31] Reinehr T, Kulle A, Rothermel J, et al. Longitudinal analyses of the steroid metabolome in obese PCOS girls with weight loss[J]. Endocr Connect, 2017, 6(4): 213-224. [32] Concepcion J, Chen K, Saito R, et al. Identification of pathognomonic purine synthesis biomarkers by metabolomic profiling of adolescents with obesity and type 2 diabetes[J]. PLoS One, 2020, 15(6): e0234970. [33] Perng W, Ringham BM, Smith HA, et al. A prospective study of associations between in utero exposure to gestational diabetes mellitus and metabolomic profiles during late childhood and adolescence[J]. Diabetologia, 2020, 63(2): 296-312. [34] Zeng MM, Liang YZ, Li HD, et al. Plasma metabolic fingerprinting of childhood obesity by GC/MS in conjunction with multivariate statistical analysis[J]. J Pharm Biomed Anal, 2010, 52(2): 265-272. [35] Mccormack SE, Shaham O, Mccarthy MA, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents[J]. Pediatr Obes, 2013, 8(1): 52-61. [36] Martos-Moreno GA, Mastrangelo A, Barrios V, et al. Metabolomics allows the discrimination of the pathophysiological relevance of hyperinsulinism in obese prepubertal children[J]. Int J Obes (Lond), 2017, 41(10): 1473-1480. [37] Mastrangelo A, Martos-Moreno GA, García A, et al. Insulin resistance in prepubertal obese children correlates with sex-dependent early onset metabolomic alterations[J]. Int J Obes (Lond), 2016, 40(10): 1494-1502. [38] Vanweert F, Schrauwen P, Phielix E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes[J]. Nutr Diabetes, 2022, 12(1): 35. [39] Hellmuth C, Kirchberg FF, Lass N, et al. Tyrosine is associated with insulin resistance in longitudinal metabolomic profiling of obese children[J]. J Diabetes Res, 2016, 2016: 2108909. [40] Cussotto S, Delgado I, Anesi A, et al. Tryptophan metabolic pathways are altered in obesity and are associated with systemic inflammation[J]. Front Immunol, 2020, 11: 557. [41] Short KR, Chadwick JQ, Teague AM, et al. Effect of obesity and exercise training on plasma amino acids and amino metabolites in american indian adolescents[J]. J Clin Endocrinol Metab, 2019, 104(8): 3249-3261. [42] Bervoets L, Massa G. Classification and clinical characterization of metabolically "healthy" obese children and adolescents[J]. J Pediatr Endocrinol Metab, 2016, 29(5): 553-60. [43] Mihalik SJ, MichaliszynSF, De Las Heras J, et al. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes evidence for enhanced mitochondrial oxidation[J]. Diabetes Care, 2012, 35(3): 605-611. [44] Gall WE, Beebe K, Lawton KA, et al. α-Hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population[J]. PLoS One, 2010, 5(5): e10883. |