[1] Castori M, Bottillo I, Laino L, et al. An additional patient with 3q27.3 microdeletion syndrome[J]. J Child Neurol, 2015, 30(4): 500-504. [2] Pollazzon M, Grosso S, Papa F T, et al. A 9.3 Mb microdeletion of 3q27.3q29 associated with psychomotor and growth delay, tricuspid valve dysplasia and bifid thumb[J]. Eur J Med Genet, 2009, 52(2-3): 131-133. [3] Mandrile G, Dubois A, Hoffman J D, et al. 3q26.33-3q27.2 microdeletion: A new microdeletion syndrome?[J]. Eur J Med Genet, 2013, 56(4): 216-221. [4] Thevenon J, Callier P, Poquet H, et al. 3q27.3 microdeletional syndrome:A recognisable clinical entity associating dysmorphic features, marfanoid habitus, intellectual disability and psychosis with mood disorder[J]. J Med Genet, 2014, 51(1): 21-27. [5] Willatt L, Cox J, Barber J, et al. 3q29 microdeletion syndrome:Clinical and molecular characterization of a new syndrome[J]. Am J Hum Genet, 2005, 77(1): 154-160. [6] Pizzuti A, Amati F, Calabrese G, et al. cDNA characterization and chromosomal mapping of two human homologues of the Drosophila dishevelled polarity gene[J]. Hum Mol Genet, 1996, 5(7): 953-958. [7] Laezza F, Wilding TJ, Sequeira S, et al. KRIP6:A novel BTB/kelch protein regulating function of kainate receptors[J]. Mol Cell Neurosci, 2007, 34(4): 539-550. [8] Gory-fauré S, Windscheid V, Bosc C, et al. STOP-like protein 21 is a novel member of the STOP family, revealing a Golgi localization of STOP proteins[J]. J Biol Chem, 2006, 281(38): 28387-28396. [9] Ghilardi N, Wiestner A, Kikuchi M, et al. Hereditary thrombocythaemia in a Japanese family is caused by a novel point mutation in the thrombopoietin gene[J]. Br J Haematol, 1999, 107(2): 310-316. [10] Graziano C, Carone S, Panza E, et al.Association of hereditary thrombocythemia and distal limb defects with a thrombopoietin gene mutation[J]. Blood, 2009, 114(8): 1655-1657. [11] Wiestner A, Schlemper RJ, Van der maas AP, et al. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia[J]. Nat Genet, 1998, 18(1): 49-52. [12] Blanz J, Schweizer M, Auberson M, et al. Leukoencephalopathy upon disruption of the chloride channel ClC-2[J]. J Neurosci, 2007, 27(24): 6581-6589. [13] Murray CB, Morales MM, Flotte TR, et al. CIC-2: a developmentally dependent chloride channel expressed in the fetal lung and downregulated after birth[J]. Am J Respir Cell Mol Biol, 1995, 12(6): 597-604. [14] Helbig I, Lopez-hernandez T, Shor O, et al. A recurrent missense variant in AP2M1 impairs clathrin-mediated endocytosis and causes developmental and epileptic encephalopathy[J]. Am J Hum Genet, 2019, 104(6): 1060-1072. [15] Cipolat S, Rudka T, Hartmann D, et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling[J]. Cell, 2006, 126(1): 163-175. [16] Schlesser H N, Simon L, Hofmann M C, et al. Effects of ETV5 (ets variant gene 5) on testis and body growth, time course of spermatogonial stem cell loss, and fertility in mice[J]. Biol Reprod, 2008, 78(3): 483-489. [17] Yang A, Kaghad M, Wang Y, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities[J]. Mol Cell, 1998, 2(3): 305-316. [18] Ferone G, Thomason HA, Antonini D, et al. Mutant p63 causes defective expansion of ectodermal progenitor cells and impaired FGF signalling in AEC syndrome[J]. EMBO Mol Med, 2012, 4(3): 192-205. [19] Basha M, Demeer B, Revencu N, et al. Whole exome sequencing identifies mutations in 10% of patients with familial non-syndromic cleft lip and/or palate in genes mutated in well-known syndromes[J]. J Med Genet, 2018, 55(7): 449-458. [20] Rinne T, Brunner HG, Van bokhoven H. p63-associated disorders[J]. Cell Cycle, 2007, 6(3): 262-268. [21] Huang Y, Jeong JS, Okamura J, et al. Global tumor protein p53/p63 interactome: Making a case for cisplatin chemoresistance[J]. Cell Cycle, 2012, 11(12): 2367-2379. [22] Buhlmann S, Pützer BM. DNp73 a matter of cancer: Mechanisms and clinical implications[J]. Biochim Biophys Acta, 2008, 1785(2): 207-216. [23] Bisso A, Collavin L, Del sal G. p73 as a pharmaceutical target for cancer therapy[J]. Curr Pharm Des, 2011, 17(6): 578-590. [24] Graziano V, De Laurenzi V. Role of p63 in cancer development[J]. Biochim Biophys Acta, 2011, 1816(1): 57-66. [25] Barua S, Pereira EM, Jobanputra V, et al. 3q27.1 microdeletion causes prenatal and postnatal growth restriction and neurodevelopmental abnormalities[J]. Mol Cytogenet, 2022, 15(1): 7. [26] Dasouki M, Roberts J, Santiago A, et al. Confirmation and further delineation of the 3q26.33-3q27.2 microdeletion syndrome[J]. Eur J Med Genet, 2014, 57(2-3): 76-80. |