[1] Chevalley T, Rizzoli R. Acquisition of peak bone mass[J]. Best Pract Res Clin Endocrinol Metab, 2022,36(2):101616. [2] 中华医学会儿科学分会内分泌遗传代谢学组, 中华医学会儿科学分会儿童保健学组, 中华儿科杂志编辑委员会. 儿童体格发育评估与管理临床实践专家共识[J]. 中华儿科杂志, 2021,59(3):169-174. Endocrine Genetic Metabolism Group of Pediatric Branch of Chinese Medical Association, Child Health Care Group of Pediatric Branch of Chinese Medical Association, Editorial Committee of Chinese Journal of Pediatrics. Expert consensus on clinical practice of assessment and management of children's physical development[J]. Chin J Pediatr, 2021,59(3):169-174.(in Chinese) [3] Gordon RJ, Gordon CM. Adolescents and bone health[J]. Clin Obstet Gynecol, 2020,63(3):504-511. [4] Liu J, Wang L, Sun J, et al. Bone mineral density reference standards for Chinese children aged 3-18: Cross-sectional results of the 2013—2015 China Child and Adolescent Cardiovascular Health (CCACH) study[J]. BMJ Open, 2017,7(5):e014542. [5] Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton[J]. Trends Endocrinol Metab, 2012,23(11):576-581. [6] Liedert A, Nemitz C, Haffner-Luntzer M, et al. Effects of estrogen receptor and Wnt signaling activation on mechanically induced bone formation in a mouse model of postmenopausal bone loss[J]. Int J Mol Sci,2020,21(21):8301. [7] Kovács B, Vajda E, Nagy EE. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis[J]. Int J Mol Sci,2019,20(18):4653. [8] Manolagas SC, O'Brien CA, Almeida M. The role of estrogen and androgen receptors in bone health and disease[J]. Nat Rev Endocrinol,2013,9(12):699-712. [9] Börjesson AE, Lagerquist MK, Windahl SH, et al. The role of estrogen receptor alpha in the regulation of bone and growth plate cartilage[J]. Cell Mol Life Sci, 2013,70(21):4023-4037. [10] Vandewalle S, Taes Y, Fiers T, et al. Associations of sex steroids with bone maturation, bone mineral density, bone geometry, and body composition: A cross-sectional study in healthy male adolescents[J]. J Clin Endocrinol Metab, 2014,99(7):1272-1282. [11] Chulani VL, Gordon LP. Adolescent growth and development[J]. Prim Care, 2014,41(3):465-487. [12] Zhang L, Li H, Zhang Y, et al. Association of body compositions and bone mineral density in Chinese children and adolescents: Compositional data analysis[J]. Biomed Res Int, 2021,2021:1904343. [13] 黄晓兰, 杨园园, 曾园圆, 等. 儿童青少年脂肪分布特点和发育规律研究[J]. 科技风, 2021,22:148-150. Huang XL, Yang YY, Zeng YY, et al. Study on the distribution characteristics and development rules of fat in children and adolescents[J]. Scientific and Technological, 2021,22:148-150. (in Chinese) [14] Rokoff LB, Rifas-Shiman SL, Switkowski KM, et al. Body composition and bone mineral density in childhood[J]. Bone, 2019,121:9-15. [15] Xiao Z, Xu H. Gender-specific body composition relationships between adipose tissue distribution and peak bone mineral density in young Chinese adults[J]. Biomed Res Int, 2020,2020:6724749. [16] Liu YH, Xu Y, Wen YB, et al. Association of weight-adjusted body fat and fat distribution with bone mineral density in middle-aged chinese adults: A cross-sectional study[J]. PLoS One, 2013,8(5):e63339. [17] Liang J, Chen Y, Zhang J, et al. Associations of weight-adjusted body fat and fat distribution with bone mineral density in Chinese children aged 6-10 years[J]. Int J Environ Res Public Health, 2020,17(5):1763. [18] Motul KJ, Rosen CJ. Understanding leptin-dependent regulation of skeletal homeostasis[J]. Biochimie, 2012,94(10):2089-2096. [19] Pollock NK. Childhood obesity, bone development, and cardiometabolic risk factors[J]. Mol Cell Endocrinol, 2015,410:52-63. [20] Pollock NK, Bernard PJ, Gutin B, et al. Adolescent obesity, bone mass, and cardiometabolic risk factors[J]. J Pediatr, 2011,158(5):727-734. [21] Kindler JM, Lobene AJ, Vogel KA, et al. Adiposity, insulin resistance, and bone mass in children and adolescents[J]. J Clin Endocrinol Metab, 2019,104(3):892-899. [22] Di Cesare M, Soric' M, Bovet P, et al. The epidemiological burden of obesity in childhood: A worldwide epidemic requiring urgent action[J]. BMC medicine, 2019,17(1):212. [23] Dixit M, Poudel SB, Yakar S. Effects of GH/IGF axis on bone and cartilage[J]. Mol Cell Endocrinol,2021,519:111052. [24] Vaňuga P, Kuzˇma M, Stojkovicˇová D, et al. The long-term effects of growth hormone replacement on bone mineral density and trabecular bone score: Results of the 10-year prospective follow-up[J]. Physiol Res, 2021,70(Suppl 1):61-68. [25] Yuan S, Wan ZH, Cheng SL, et al. Insulin-like growth factor-1, bone mineral density, and fracture: A mendelian randomization study[J]. J Clin Endocrinol Metab, 2021,106(4):1552-1558. [26] 袁春雷, 官燕飞, 袁斌, 等. 0~16岁儿童IGF-1的变化及其正常参考范围的建立[J]. 中国优生与遗传杂志, 2015,23(3):116-118. Yuan CL, Guan YF, Yuan B, et al. Changes of IGF-1 in children aged 0-16 years and establishment of normal reference range[J]. Chinese Journal of Eugenics and Genetics, 2015,23(3):116-118. (in Chinese) [27] 郑婵娟. 儿童青少年血清IGF-1及IGFBP-3的正常参考值研究[J]. 医学信息, 2019,32(18):178-180. Zheng CJ. Study on normal reference values of serum IGF-1 and IGFBP-3 in children and adolescents[J]. Journal of Medical Information, 2019,32(18):178-180. (in Chinese) [28] Chen Y, Yu H, Pask AJ, et al. Effects of androgen and oestrogen on IGF pathways controlling phallus growth[J]. Reproduction, 2019,157(1):1-12. [29] 张萌萌, 张秀珍, 邓伟民, 等. 骨代谢生化指标临床应用专家共识(2020)[J]. 中国骨质疏松杂志, 2020,26(6):781-796. Zhang MM, Zhang XZ, Deng WM, et al. Expert consensus on clinical application of biochemical indicators of bone metabolism (2020)[J]. Chinese Journal of Osteoporosis, 2020,26(6):781-796. (in Chinese) [30] Zhang H, Li Z, Wei Y. Status and influential factors of vitamin D among children aged 0 to 6 years in a Chinese population[J]. BMC Public Health, 2020,20(1):429. [31] Hu Y, Chen J, Wang R, et al. Vitamin D nutritional status and its related factors for Chinese children and adolescents in 2010—2012[J]. Nutrients, 2017,9(9):1024. [32] Vissing Landgrebe A, Asp Vonsild Lund M, Lausten-Thomsen U, et al. Population-based pediatric reference values for serum parathyroid hormone, vitamin D, calcium, and phosphate in Danish/North-European white children and adolescents[J]. Clin Chim Acta, 2021,523:483-490. [33] Li H, Huang T, Xiao P, et al. Widespread vitamin D deficiency and its sex-specific association with adiposity in Chinese children and adolescents[J]. Nutrition, 2020,71:110646. [34] Dzik KP, Kaczor JJ. Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state[J]. Eur J Appl Physiol, 2019,119(4):825-839. [35] Abboud M, Rybchyn MS, Ning YJ, et al. 1,25-Dihydroxycholecalciferol (calcitriol) modifies uptake and release of 25-hydroxycholecalciferol in skeletal muscle cells in culture[J]. J Steroid Biochem Mol Biol, 2018,177:109-115. [36] 程红, 李海波, 侯冬青, 等. 学龄儿童维生素D营养状况与身体肌肉量关系的研究[J]. 中华流行病学杂志, 2021,42(3):455-461. Cheng H, Li HB, Hou DQ, et al. Study on the relationship between vitamin D nutritional status and body muscle mass of school-age children[J]. Chin J Epidemiol, 2021,42(3):455-461. (in Chinese) [37] Abbas MA. Physiological functions of vitamin D in adipose tissue[J]. J Steroid Biochem Mol Biol, 2017,165(Pt B):369-381. [38] 程红, 肖培, 侯冬青, 等. 儿童青少年身体脂肪分布与维生素D营养状况的关联研究[J]. 中华流行病学杂志, 2021,42(3):469-474. Cheng H, Xiao P, Hou DQ, et al. Study on the relationship between body fat distribution and vitamin D nutritional status in children and adolescents[J]. Chin J Epidemiol, 2021,42(3):469-474. (in Chinese) [39] van der Sluis IM, Boot AM, Krenning EP, et al. Longitudinal follow-up of bone density and body composition in children with precocious or early puberty before, during and after cessation of GnRH agonist therapy[J]. J Clin Endocrinol Metab, 2002,87(2):506-512. [40] Alessandri SB, Pereira Fde A, Villela RA, et al. Bone mineral density and body composition in girls with idiopathic central precocious puberty before and after treatment with a gonadotropin-releasing hormone agonist[J]. Clinics (Sao Paulo), 2012,67(6):591-596. [41] Elhakeem A, Frysz M, Tilling K, et al. Association between age at puberty and bone accrual from 10 to 25 years of age[J]. JAMA Netw Open, 2019,2(8):e198918. [42] Saggese G, Bertelloni S, Baroncelli GI, et al. Reduction of bone density:An effect of gonadotropin releasing hormone analogue treatment in central precocious puberty[J]. Eur J Pediatr, 1993,152(9):717-720. [43] Faienza MF, Brunetti G, Acquafredda A, et al. Metabolic outcomes, bone health, and risk of polycystic ovary syndrome in girls with idiopathic central precocious puberty treated with gonadotropin-releasing hormone analogues[J]. Horm Res Paediatr, 2017,87(3):162-169. [44] De Sanctis V, Soliman AT, Di Maio S, et al. Long-term effects and significant adverse drug reactions (ADRs) associated with the use of gonadotropin-releasing hormone analogs (GnRHa) for central precocious puberty: A brief review of literature[J]. Acta Biomed, 2019,90(3):345-359. |