[1] van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids[J]. Trends Microbiol, 2021, 29 (8): 700-712. [2] Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry:A bridge to lipidomics[J]. J Lipid Res, 2003, 44 (6): 1071-1079. [3] 田琪,李肖飞,冯晔,等. 脂质组学技术在疾病诊断中的研究进展[J]. 中医药导报, 2019, 25(21): 83-86. Tian Q,Li XF,Feng Y,et al. Research progress of lipidomics in disease diagnosis[J]. Guid J Tradit Chin Med Pharm,2019,25(21):83-86.(in Chinese) [4] 迟学彭,于冬梅,琚腊红,等. 儿童青少年糖尿病患病现况及变化趋势研究[J]. 当代医学, 2019, 25(11): 190-192. Chi XP,Yu DM,Ju LH,et al. Study on current situation and changing trend of diabetes in children and adolescents[J]. Contemp Med, 2019, 25(11): 190-192.(in Chinese) [5] 赵光明,刘红艳.中国儿童青少年超重肥胖流行趋势及其影响因素[J]. 世界最新医学信息文摘,2021,21(44):63-66. Zhao GM,Liu HY. Prevalence of overweight and obesity in Chinese children and adolescents and its influencing factors[J]. World Latest Medicine Information, 2021, 21 (44): 63-66.(in Chinese) [6] Heindel JJ,Balbus J, Birnbaum L,et al. Developmentalorigins of health and disease: Integrating environmental influences[J]. Endocrinology, 2015, 156(10): 3416-3421. [7] Kofeler HC, Ahrends R, Baker ES,et al. Recommendations for good practice in MS-based lipidomics[J]. J Lipid Res, 2021, 62:100138. [8] Han X, Gross RW. Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples[J]. Mass Spectrom Rev, 2005, 24 (3): 367-412. [9] Mahmud I, Kabir M, Haque R,et al. Decoding themetabolome and lipidome of child malnutrition by mass spectrometric techniques: Present status and future perspectives[J]. Anal Chem, 2019, 91 (23): 14784-14791. [10] Kuerschner L, Thiele C. Tracinglipid metabolism by alkyne lipids and mass spectrometry: The state of the art[J]. Front Mol Biosci, 2022, 9: 880559. [11] Chaurasia B, Summers SA. Ceramides inmetabolism: Key lipotoxic players[J]. Annu Rev Physiol, 2021, 83: 303-330. [12] Leon-Aguilar LF, Croyal M, Ferchaud-Roucher V,et al. Maternal obesity leads to long-term altered levels of plasma ceramides in the offspring as revealed by a longitudinal lipidomic study in children[J]. Int J Obes (Lond), 2019, 43 (6): 1231-1243. [13] Daraki V, Roumeliotaki T, Koutra K, et al. Effect of parental obesity and gestational diabetes on child neuropsychological and behavioral development at 4 years of age: The Rhea mother-child cohort, Crete, Greece[J]. Eur Child Adolesc Psychiatry, 2017, 26(6): 703-714. [14] LaBarre JL, Miller AL, Bauer KW,et al. Early life stress exposure associated with reduced polyunsaturated-containing lipids in low-income children[J]. Pediatr Res, 2021, 89 (5): 1310-1315. [15] Chen CS, Kuo TC, Kuo HC,et al. Lipidomics of children and adolescents exposed to multiple industrial pollutants[J]. Environ Res, 2021, 201: 111448. [16] McGlinchey A, Sinioja T, Lamichhane S,et al. Prenatal exposure to perfluoroalkyl substances modulates neonatal serum phospholipids, increasing risk of type 1 diabetes[J]. Environ Int, 2020, 143: 105935. [17] Jones PR, Rajalahti T, Resaland GK,et al. Associations of physical activity and sedentary time with lipoprotein subclasses in Norwegian schoolchildren: The Active Smarter Kids (ASK) study[J]. Atherosclerosis, 2019, 288: 186-193. [18] Magge SN, Goodman E, Armstrong SC. Themetabolic syndrome in children and adolescents: Shifting the focus to cardiometabolic risk factor clustering[J]. Pediatrics, 2017, 140 (2): e20171603. [19] Anjos S, Feiteira E, Cerveira F,et al. Lipidomicsreveals similar changes in serum phospholipid signatures of overweight and obese pediatric subjects[J]. J Proteome Res, 2019, 18 (8): 3174-3183. [20] Szczerbinski L, Wojciechowska G, Olichwier A,et al. Untargeted metabolomics analysis of the serum metabolic signature of childhood obesity[J]. Nutrients, 2022, 14 (1): doi: 10.3390/nu14010214. [21] Tsatsoulis A, Paschou SA. Metabolicallyhealthy obesity: Criteria, epidemiology, controversies, and consequences[J]. Curr Obes Rep, 2020, 9(2):109-120. [22] Castillo EC, Elizondo-Montemayor L, Hernandez-Brenes C,et al. Integrative analysis of lipid profiles in plasma allows cardiometabolic risk factor clustering in children with metabolically unhealthy obesity[J]. Oxid Med Cell Longev, 2020, 2020 2935278. [23] Djuricic I, Calder PC. Beneficialoutcomes of Omega-6 and Omega-3 polyunsaturated fatty acids on human health: An update for 2021[J]. Nutrients, 2021,13 (7): 2421. [24] Innes JK, Calder PC. Omega-6 fatty acids and inflammation[J]. Prostaglandins Leukot Essent Fatty Acids, 2018, 132: 41-48. [25] Sung KC, Park HY, Kim MJ,et al. Metabolic markers associated with insulin resistance predict type 2 diabetes in Koreans with normal blood pressure or prehypertension[J]. Cardiovasc Diabetol, 2016, 15: 47. [26] Dabelea D, Stafford JM, Mayer-Davis EJ,et al. Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood[J]. JAMA, 2017, 317 (8): 825-835. [27] Lopez X, Goldfine AB, Holland WL,et al. Plasma ceramides are elevated in female children and adolescents with type 2 diabetes[J]. J Pediatr Endocrinol Metab, 2013, 26 (9-10): 995-998. [28] Majumdar I,Mastrandrea LD. Serum sphingolipids and inflammatory mediators in adolescents at risk for metabolic syndrome[J]. Endocrine, 2012, 41 (3): 442-449. [29] Vajro P, Lenta S, Socha P,et al. Diagnosis of nonalcoholic fatty liver disease in children and adolescents: Position paper of the ESPGHAN Hepatology Committee[J]. J Pediatr Gastroenterol Nutr, 2012, 54 (5): 700-713. [30] Wasilewska N, Bobrus-Chociej A, Harasim-Symbor E,et al. Increased serum concentration of ceramides in obese children with nonalcoholic fatty liver disease[J]. Lipids Health Dis, 2018, 17 (1): 216. [31] Kurek K, Piotrowska DM, Wiesiolek-Kurek P,et al. Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease[J]. Liver Int, 2014, 34 (7): 1074-1083. [32] Draijer LG, Froon-Torenstra D, van Weeghel M,et al. Lipidomics in nonalcoholic fatty liver disease: Exploring serum lipids as biomarkers for pediatric nonalcoholic fatty liver disease[J]. J Pediatr Gastroenterol Nutr, 2020, 71 (4): 433-439. [33] Wang ZH, Zheng KI, Wang XD,et al. LC-MS-based lipidomic analysis in distinguishing patients with nonalcoholic steatohepatitis from nonalcoholic fatty liver[J]. Hepatobiliary Pancreat Dis Int, 2021, 20 (5): 452-459. [34] Titchenell PM, Lazar MA,Birnbaum MJ. Unraveling the regulation of hepatic metabolism by insulin[J]. Trends Endocrinol Metab, 2017,28(7): 497-505. [35] Lamichhane S, Ahonen L, Dyrlund TS,et al. Dynamics of plasma lipidome in progression to islet autoimmunity and type 1 diabetes - type 1 diabetes prediction and prevention study (DIPP)[J]. Sci Rep, 2018,8(1):10635. [36] Lamichhane S, Ahonen L, Dyrlund TS,et al. Cord-blood lipidome in progression to islet autoimmunity and type 1 diabetes[J]. Biomolecules, 2019, 9 (1): doi: 10.3390/biom9010033. [37] Andersson Svard A, Kaur S, Trost K,et al. Characterization of plasma lipidomics in adolescent subjects with increased risk for type 1 diabetes in the DiPiS cohort[J]. Metabolomics, 2020, 16(10): 109. [38] 刘贤,林穗方,陈文雄,等. 中国儿童孤独症谱系障碍患病率Meta分析[J]. 中国儿童保健杂志,2018,26(4):402-406. Liu X,Lin SF,Chen WX,et al. AMeta-analysis of the prevalence of autism spectrum disorders in children in China[J].Chin J Child Health Care, 2018, 26 (4): 402-406.(in Chinese) [39] 曾海辉,陈妙婷,肖运华,等. 孤独症谱系障碍患儿早期康复治疗的疗效和预后[J].神经病学与神经康复学杂志,2020,16(4):158-164. Zeng HH,Chen MT,Xiao YH,et al. Efficacy and prognosis of early rehabilitation in children with autism spectrum disorders[J]. Journal of Neurology and Neurorehabilitation, 2020, 16(4):158-164.(in Chinese) [40] Usui N, Iwata K, Miyachi T,et al. VLDL-specific increases of fatty acids in autism spectrum disorder correlate with social interaction[J]. E Bio Medicine, 2020,58:102917. [41] El-Ansary AK, Bacha AG, Al-Ayahdi LY. Plasma fatty acids as diagnostic markers in autistic patients from Saudi Arabia[J]. Lipids Health Dis, 2011,10:62. [42] Erkan E, Zhao X, Setchell K,et al. Distinct urinary lipid profile in children with focal segmental glomerulosclerosis[J]. Pediatr Nephrol, 2016,31(4):581-588. [43] Scholte BJ, Horati H, Veltman M,et al. Oxidative stress and abnormal bioactive lipids in early cystic fibrosis lung disease[J]. J Cyst Fibros, 2019,18(6):781-789. [44] Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health[J]. Gut Microbes, 2021, 13 (1): 1-24. [45] Agus A, Clement K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders[J]. Gut, 2021, 70 (6): 1174-1182. |