Chinese Journal of Child Health Care ›› 2024, Vol. 32 ›› Issue (12): 1277-1281.DOI: 10.11852/zgetbjzz2024-1362
• Professional Forum • Next Articles
XIAO Le1,2, YE Xiaoshan1
Received:
2024-11-11
Revised:
2024-11-15
Online:
2024-12-10
Published:
2024-12-10
Contact:
YE Xiaoshan, E-mail: 2000211367@muhn.edu.cn
肖乐1,2, 叶小姗1
通讯作者:
叶小姗,E-mail: 2000211367@muhn.edu.cn
作者简介:
肖乐(1980-),女,教授,博士学位,主要研究方向为儿童神经发育障碍性疾病。
基金资助:
CLC Number:
XIAO Le, YE Xiaoshan. Emphasizing the neurobiological mechanisms of autism spectrum disorder[J]. Chinese Journal of Child Health Care, 2024, 32(12): 1277-1281.
肖乐, 叶小姗. 重视孤独症谱系障碍发生的神经生物学机制[J]. 中国儿童保健杂志, 2024, 32(12): 1277-1281.
Add to citation manager EndNote|Ris|BibTeX
[1] 美国精神医学学会. 精神障碍诊断与统计手册[M].北京:北京大学出版社: 2015. [2] Hirota T, King BHJJ. Autism spectrum disorder: A review[J].JAMA,2023, 329(2): 157-168. [3] Grosvenor LP, Croen LA, Lynch FL, et al. Autism diagnosis among us children and adults, 2011-2022[J]. JAMA,2024, 7(10): e2442218-e. [4] Zhou H, Xu X, Yan W, et al. Prevalence of autism spectrum disorder in China: A nationwide multi-center population-based study among children aged 6 to 12 years[J].Neurosci Bull, 2020(36): 961-971. [5] Hansen SN, Schendel DE, Parner ETJJP. Explaining the increase in the prevalence of autism spectrum disorders: The proportion attributable to changes in reporting practices[J].JAMA Pediatr,2015,169(1): 56-62. [6] Zhuang H, Liang Z, Ma G, et al. Autism spectrum disorder: Pathogenesis, biomarker, and intervention therapy[J]. Med Comm, 2024, 5(3): e497. [7] Hansen SN, Schendel DE, Francis RW, et al. Recurrence risk of autism in siblings and cousins: A multinational, population-based study[J].J Am Acad Child Adolesc Psychiatry 2019, 58(9): 866-875. [8] Rosenberg RE, Law JK, Yenokyan G, et al.Characteristics and concordance of autism spectrum disorders among 277 twin pairs[J].Arch Pediatr Adolesc Med,2009, 163(10): 907-914. [9] Xiong J, Chen S, Pang N, et al. Neurological diseases with autism spectrum disorder: Role of ASD risk genes[J]. Nat Rev Neurosci, 2019(13): 349. [10] Bourgeron T.From the genetic architecture to synaptic plasticity in autism spectrum disorder[J].Nat Rev Neurosci,2015,16(9): 551-563. [11] Missler M, Südhof TC. Neurexins:Three genes and 1001 products[J]. Trends Genet, 1998, 14(1): 20-26. [12] Varghese M, Keshav N, Jacot-Descombes S, et al.Autism spectrum disorder: Neuropathology and animal models[J]. Acta Neuropathol, 2017,134(4): 537-566. [13] Kasem E, Kurihara T, Tabuchi K.Neurexins and neuropsychiatric disorders[J]. Neurosci Res,2018(127): 53-60. [14] Dachtler J, Ivorra JL, Rowland TE, et al.Heterozygous deletion of α-neurexin Ⅰ or α-neurexin Ⅱ results in behaviors relevant to autism and schizophrenia[J].Behavioral Neuroscience, 2015, 129(6): 765-776. [15] Ichtchenko K, Nguyen T, Südhof TC. Structures, alternative splicing, and neurexin binding of multiple neuroligins[J]. J Biol Chem, 1996, 271(5): 2676-2682. [16] Hörnberg H, Pérez-Garci E, Schreiner D, et al. Rescue of oxytocin response and social behaviour in a mouse model of autism[J]. Nature, 2020, 584(7820): 252-256. [17] Uchigashima M, Cheung A, Futai K. Neuroligin-3: A circuit-specific synapse organizer that shapes normal function and autism spectrum disorder-associated dysfunction[J]. Front Mol Neurosci, 2021, 14: 749164. [18] Tu JC, Xiao B, Naisbitt S, et al. Coupling of mGluR/Homer and PSD-95 complexes by the shank family of postsynaptic density proteins[J]. Neuron, 1999, 23(3): 583-592. [19] Orefice LL, Mosko JR, Morency DT, et al.Targeting peripheral somatosensory neurons to improve tactile-related phenotypes in ASD models [J]. Cell, 2019, 178(4): 867-886.e24. [20] De La Torre-Ubieta L, Won H, Stein JL, et al. Advancing the understanding of autism disease mechanisms through genetics[J]. Nat Med, 2016, 22(4): 345-361. [21] Bagni C, Zukin RS. A synaptic perspective of fragile X syndrome and autism spectrum disorders[J]. Neuron, 2019, 101(6): 1070-1088. [22] Bourgeron T. A synaptic trek to autism[J]. Curr Opin Neurobiol, 2009, 19(2): 231-234. [23] Yeung KS, Tso WWY, Ip JJK, et al.Identification of mutations in the PI3K-AKT-mTOR signalling pathway in patients with macrocephaly and developmental delay and/or autism[J].Mol Autism, 2017(8): 66. [24] Zhang J, Zhang JX, Zhang QL.PI3K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder[J]. Brain Res Bull, 2016(125): 152-158. [25] Neves-Pereira M, Müller B, Massie D, et al. Deregulation of EIF4E: A novel mechanism for autism[J]. J Med Genet, 2009, 46(11): 759-765. [26] Astorkia M, Liu Y, Pedrosa EM, et al. Molecular and network disruptions in neurodevelopment uncovered by single cell transcriptomics analysis of CHD8 heterozygous cerebral organoids[J]. Heliyon, 2024, 10(14): e34862. [27] Paulsen B, Velasco S, Kedaigle AJ, et al. Autism genes converge on asynchronous development of shared neuron classes[J]. Nature, 2022, 602(7896): 268-273. [28] Lord C, Brugha TS, Charman T, et al. Autism spectrum disorder[J]. Nat Rev Dis Primers, 2020, 6(1): 5. [29] Ye X, Zhou Q, Ren P, et al. The synaptic and circuit functions of vitamin d in neurodevelopment disorders[J]. Neuropsychiatr Dis Treat, 2023(19): 1515-1530. [30] Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders[J]. Neuron, 2015, 87(4): 684-698. [31] Zhang L, Huang CC, Dai Y, et al. Symptom improvement in children with autism spectrum disorder following bumetanide administration is associated with decreased GABA/glutamate ratios[J].Transl Psychiatry, 2020, 10(1): 9. [32] Yang JQ, Yang CH, Yin BQ. Combined the GABA-A and GABA-B receptor agonists attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism[J]. Behav Brain Res,2021(403): 113094. [33] Cox A, Kohls G, Naples AJ, et al. Diminished social reward anticipation in the broad autism phenotype as revealed by event-related brain potentials[J]. Soc Cogn Affect Neurosci, 2015, 10(10): 1357-1364. [34] Bartolotti J, Sweeney JA, Mosconi MW. Functional brain abnormalities associated with comorbid anxiety in autism spectrum disorder[J]. Dev Psychopathol, 2020, 32(4): 1273-1286. [35] Folkes OM, Báldi R, Kondev V, et al. An endocannabinoid-regulated basolateral amygdala-nucleus accumbens circuit modulates sociability[J].J Clin Invest,2020, 130(4): 1728-1742. [36] Krüttner S, Falasconi A, Valbuena S, et al. Absence of familiarity triggers hallmarks of autism in mouse model through aberrant tail-of-striatum and prelimbic cortex signaling[J].Neuron, 2022, 110(9): 1468-1482.e5. [37] Hazlett HC, Gu H, Munsell BC, et al. Early brain development in infants at high risk for autism spectrum disorder [J]. Nature, 2017, 542(7641): 348-351. [38] Sacco R, Gabriele S, Persico AM. Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis[J].Psychiatry Res, 2015, 234(2): 239-251. [39] Schumann CM, Bloss CS, Barnes CC, et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism[J].J Neurosci, 2010, 30(12): 4419-4427. [40] Courchesne E, Carper R, Akshoomoff N. Evidence of brain overgrowth in the first year of life in autism[J]. JAMA, 2003, 290(3): 337-344. [41] Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders [J]. Brain Res, 2010(1309): 83-94. [42] Prem S, Millonig JH, Dicicco-Bloom E. Dysregulation of neurite outgrowth and cell migration in autism and other neurodevelopmental disorders[J].Adv Neurobiol, 2020(25): 109-153. [43] Soiza-Reilly M, Commons KG. Unraveling the architecture of the dorsal raphe synaptic neuropil using high-resolution neuroanatomy[J]. Front Neural Circuits, 2014(8): 105. [44] Sun F, Chen Y, Gao Q, et al. Abnormal gray matter structure in children and adolescents with high-functioning autism spectrum disorder[J].Psychiatry Res Neuroimaging, 2022(327): 111564. [45] Fuster JM. The prefrontal cortex--an update: Time is of the essence[J]. Neuron, 2001,30(2): 319-333. [46] Gu X, Hof PR, Friston KJ, et al. Anterior insular cortex and emotional awareness[J]. J Comp Neurol, 2013, 521(15): 3371-388. [47] Hazlett HC, Poe MD, Gerig G, et al. Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years[J]. Arch Gen Psychiatry, 2011, 68(5): 467-476. [48] Halliday AR, Vucic SN, Georges B, et al. Heterogeneity and convergence across seven neuroimaging modalities: A review of the autism spectrum disorder literature[J]. Frontiers Psychiatry, 2024(15): 1474003. [49] Yang C, Wang XK, Ma SZ, et al. Abnormal functional connectivity of the reward network is associated with social communication impairments in autism spectrum disorder: A large-scale multi-site resting-state fMRI study[J]. J Affect Disord, 2024(347): 608-618. [50] Eilam-Stock T, Xu P, Cao M, et al. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder[J]. Brain, 2014, 137(Pt1): 153-171. [51] Fan J, Bernardi S, Van Dam NT, et al. Functional deficits of the attentional networks in autism[J]. Brain Behav, 2012, 2(5): 647-660. [52] He C, Chen Y, Jian T, et al. Dynamic functional connectivity analysis reveals decreased variability of the default-mode network in developing autistic brain[J]. Autism Res, 2018, 11(11): 1479-1493. [53] Frye RE, Cakir J, Rose S, et al. Mitochondria may mediate prenatal environmental influences in autism spectrum disorder[J]. J Pers Med, 2021, 11(3) :218. [54] Walter C, Marada A, Suhm T, et al. Global kinome profiling reveals DYRK1A as critical activator of the human mitochondrial import machinery[J]. Nat Commun,2021,12(1): 4284. [55] Lamanna J, Meldolesi J. Autism spectrum disorder: Brain areas involved, neurobiological mechanisms, diagnoses and therapies[J].Int J Mol Sci,2024,25(4):2423. [56] Henze K, Martin W. Evolutionary biology: Essence of mitochondria[J]. Nature, 2003, 426(6963): 127-128. [57] Gyllenhammer LE, Rasmussen JM, Bertele N, et al. Maternal inflammation during pregnancy and offspring brain development: The role of mitochondria[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(5): 498-509. [58] Allen M, Huang BS, Notaras MJ, et al. Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca(2+) signaling[J]. Molecular Psychiatry, 2022, 27(5): 2470-2484. [59] Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder[J]. Frontiers in Neuroscience, 2023(17): 1125428. [60] Kern JK, Geier DA, Sykes LK, et al. Relevance of neuroinflammation and encephalitis in autism[J].Front Cell Neurosci, 2015(9): 519. [61] Umpierre AD, Wu LJ. How microglia sense and regulate neuronal activity[J]. Glia, 2021, 69(7): 1637-1653. [62] Sarn N, Thacker S, Lee H, et al. Germline nuclear-predominant PTEN murine model exhibits impaired social and perseverative behavior, microglial activation, and increased oxytocinergic activity[J].Mol Autism, 2021, 12(1): 41. [63] Smith SE, Li J, Garbett K, et al. Maternal immune activation alters fetal brain development through interleukin-6[J].J Neurosci, 2007, 27(40): 10695-10702. [64] Rangel-Gomez M, Alberini CM, Deneen B, et al. Neuron-Glial interactions: Implications for plasticity, behavior, and cognition[J].J Neurosci, 2024, 44(40):e1231242024. [65] Broek JA, Guest PC, Rahmoune H, et al. Proteomic analysis of post mortem brain tissue from autism patients: Evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins[J].Mol Autism,2014(5):41. [66] Edmonson C, Ziats MN, Rennert OM. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum[J].Mol Autism,2014,5(1): 3. [67] Barón-Mendoza I, García O, Calvo-Ochoa E, et al. Alterations in neuronal cytoskeletal and astrocytic proteins content in the brain of the autistic-like mouse strain C58/J[J]. Neuroscience letters, 2018(682): 32-38. [68] Bronzuoli MR, Facchinetti R, Ingrassia D, et al. Neuroglia in the autistic brain: Evidence from a preclinical model[J]. Mol Autism,2018(9): 66. [69] Wang Q, Kong Y, Wu DY, et al.Impaired calcium signaling in astrocytes modulates autism spectrum disorder-like behaviors inmice[J].Nat Commun,2021,12(1): 3321. |
[1] | WANG Yu, LI Yan, ZHU Huilin, CAO Wei, ZOU Xiaobing. Preliminary study of the cognitive and behavioral characteristics of autism spectrum disorder children with savant skills [J]. Chinese Journal of Child Health Care, 2025, 33(7): 702-706. |
[2] | JIANG Hanxiao, QIAO Yi, QU Yanlin. Mendelian randomization analysis on the association between gut microbiota and attention deficit/hyperactivity disorder with autism spectrum disorder [J]. Chinese Journal of Child Health Care, 2025, 33(7): 707-714. |
[3] | WANG Feiying, QIN Hongchao, TAO Xiaodong, QU Qiuchan, NI Yong, XU Zhanbin. Prevalence of overweight/obesity in children with autism spectrum disorder and its correlation with emotional and behavioral problems [J]. Chinese Journal of Child Health Care, 2025, 33(7): 729-732. |
[4] | YAN Wenjie, ZHAI Tianyu, LI Yan, JIANG Wenqing, CHEN Jing, SUN Zhixin, LIN Yuxiong, ZHANG Xiyan, DU Yasong. Exploration of the feasibility and safety of virtual reality intervention for children and adolescents with autism spectrum disorder [J]. Chinese Journal of Child Health Care, 2025, 33(7): 738-742. |
[5] | JIN Shaoju, LI Yan, XU Sheng. Research progress on emotional dysregulation in childrenwith autism spectrum disorder abroad [J]. Chinese Journal of Child Health Care, 2025, 33(7): 755-759. |
[6] | LING Mei, WANG Yuehong, LI Na, XIONG Yuhong, YANG Shu, XU Guifeng. Research progress of the microbiota-gut-brain axis in autism spectrum disorder and treatment [J]. Chinese Journal of Child Health Care, 2025, 33(7): 778-782. |
[7] | LI Nuo, ZHOU Yuan, QIAN Xuguang, LIU Zhenhuan, PANG Bihui, XU Libao, YAO Xiangge, ZHAO Yong. Efficacy of infra-low frequency transcranial magnetic stimulation on the treatment of autism spectrum disorder combined with sleep disorder in children [J]. Chinese Journal of Child Health Care, 2025, 33(7): 790-795. |
[8] | XU Haiping, DING Dandan, ZHU Yiru, DU Xiaoyan, HUANG Lijie, ZHANG Xueqin, DAI Jingjing. Intervention effect of nutrition and health education based on Trans-Theoretical Model of Behavior on the dietary behavior of children with autism spectrum disorder [J]. Chinese Journal of Child Health Care, 2025, 33(7): 807-812. |
[9] | Committee on Children′s Autism Prevention and Treatment, China Maternal and Child Health Association; Editorial Board of Chinese Journal of Child Health Care. Expert consensus on the standardized construction of the three-tier network for the prevention and treatment of autism spectrum disorder [J]. Chinese Journal of Child Health Care, 2025, 33(6): 581-589. |
[10] | ZHANG Lin, ZHANG Jianping, JIANG Caiming, SHAO Zhi. Brain function characteristics of preschool children with autism spectrum disorder based on functional near infrared spectroscopy [J]. Chinese Journal of Child Health Care, 2025, 33(6): 597-602. |
[11] | WANG Ling, LYU Ying, LI Qiuju. Gender- and age-related differences in the developmental level and symptom severity of children with autism spectrum disorder of different gender and age [J]. Chinese Journal of Child Health Care, 2025, 33(6): 619-622. |
[12] | PAN Yanzheng, FU Zhumei, JI Yuelong. Advances in wearable devices for assessing childhood neurodevelopmental disorders [J]. Chinese Journal of Child Health Care, 2025, 33(6): 633-637. |
[13] | ZUMURETI·Yimin, RENA·Maimaiti, WANG Minnan. Changes and mechanisms of gut microbiota in children with autism spectrum disorder [J]. Chinese Journal of Child Health Care, 2025, 33(6): 638-642. |
[14] | LIU Yinhua, LIAO Zijing, GU Ying, DAI Dongmei, REN Cailing, ZHANG Feng. Efficacy of family co-activity framework games for young children with autism spectrum disorder [J]. Chinese Journal of Child Health Care, 2025, 33(6): 671-674. |
[15] | XU Haiping, ZHU Yiru, DING Dandan, DU Xiaoyan, ZHANG Xueqin, LI Xuehan, WANG Zhuanli, HU Yawen. Research progress on daily living skills in patients with autism spectrum disorder [J]. Chinese Journal of Child Health Care, 2025, 33(4): 421-425. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||