内源性多肽的潜在作用方式与功能预测

李沄,王菲,王兴,陈玲,崔县伟,季晨博

中国儿童保健杂志 ›› 2017, Vol. 25 ›› Issue (1) : 41-43.

PDF(483 KB)
PDF(483 KB)
中国儿童保健杂志 ›› 2017, Vol. 25 ›› Issue (1) : 41-43. DOI: 10.11852/zgetbjzz2017-25-01-12
综述与讲座

内源性多肽的潜在作用方式与功能预测

  • 李沄1,王菲1,王兴2,陈玲3,崔县伟2,季晨博2
作者信息 +

Function prediction and potential action mode of endogenous polypeptides.

  • LI Yun1,WANG Fei1,WANG Xing2,Chen Ling3,Cui Xian-wei2,JI Chen-bo2.
Author information +
文章历史 +

摘要

内源性多肽是一类常见的生物活性物质,在生命活动中发挥着重要作用。近年来内源性多肽的功能受到越来越多的关注,研究内源性多肽对于深入了解疾病机制、开发新的治疗药物有着十分重要的价值。因此,对于内源性多肽潜在作用方式的分析和生物功能的初步预测,在了解多肽性质特征,提升研究效率具有重要意义。

Abstract

As a general bioactive compound,endogenous polypeptides play a crucial role in fundamental processes of life.Recently,a growing number of researchers focus on endogenous polypeptides which greatly contribute to disease research and durg discovery.Thus,the prediction and analysis of potential function of polypeptides are of great significance in polypeptide investigation and application

关键词

内源性多肽 / 作用方式 / 功能 / 预测

Key words

endogenous polypeptides / action mode / function / prediction

引用本文

导出引用
李沄,王菲,王兴,陈玲,崔县伟,季晨博. 内源性多肽的潜在作用方式与功能预测[J]. 中国儿童保健杂志. 2017, 25(1): 41-43 https://doi.org/10.11852/zgetbjzz2017-25-01-12
LI Yun,WANG Fei,WANG Xing,Chen Ling,Cui Xian-wei,JI Chen-bo.. Function prediction and potential action mode of endogenous polypeptides.[J]. Chinese Journal of Child Health Care. 2017, 25(1): 41-43 https://doi.org/10.11852/zgetbjzz2017-25-01-12
中图分类号: R179   

参考文献

[1] Wu D,Gao Y,Qi Y,et al.Peptide-based cancer therapy:opportunity and challenge[J].Cancer Lett,2014,351(1):13-22.
[2] Strominger JL,Fridkis-Hareli M.Synthetic peptides and methods of use for autoimmune disease therapies[M].WO,2015.
[3] Bavec A.(Poly)peptide-based therapy for diabetes mellitus:Insulins versus incretins[J].Life Sci,2014,99(Suppl 1-2):7-13.
[4] Rosés C,Carbajo D,Sanclimens G,et al.Cell-penetrating γ-peptide/antimicrobial undecapeptide conjugates with anticancer activity[J].Tetrahedron,2012,68(23):4406-4412.
[5] Nguyen AD,Herzog H,Sainsbury A.Neuropeptide Y and peptide YY:important regulators of energy metabolism[J].Current Opinion in Endocrinology Diabetes & Obesity,2011,18(1):56-60.
[6] Saido TC.Metabolism of amyloid β peptide and pathogenesis of Alzheimer's disease[J].Proceedings of the Japan Academy Ser B Physical & Biological Sciences,2013,89(7):321-339.
[7] Celik O,Aydin S,Celik N,et al.Peptides:basic determinants of reproductive functions[J].Peptides,2015,72:34-43.
[8] Cheng TY,Chen MH,Chang WH,et al.Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering[J].Biomaterials,2013,34(8):2005-2016.
[9] Hillis G,Welsh P,Chalmers J,et al.The relative and combined ability of high sensitivity cardiac troponin T and N-terminal pro-BNP to predict cardiovascular events and death in patients with type 2 diabetes mellitus[J].Heart Lung & Circulation,2013,22(Suppl 1):S68.
[10] Anderson D,Anderson K,Chang CL,et al.A micropeptide encoded by a putative long noncoding RNA regulates muscle performance[J].Cell,2015,160(4):595-606.
[11] Nelson BR,Makarewich CA,Anderson DM,et al.A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle[J].Science,2016,351(6270):271-275.
[12] Lecker SH,Goldberg AL.Slowing muscle atrophy:putting the brakes on protein breakdown[J].Journal of Physiology,2003,545(Pt 3):729-729.
[13] Romere C,Duerrschmid C,Bournat J,et al.Asprosin,a fasting-induced glucogenic protein hormone[J].Cell,2016,165(3):1-14.
[14] Bomar MG,Galande AK.Modulation of the cannabinoid receptors by hemopressin peptides[J].Life Sci,2013,92(8-9):520-524.
[15] Masuyer G,Schwager SL,Sturrock ED,et al.Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides[J].Scientific Reports,2012,2(10):95-95.
[16] Mantha AK,Monisha D,Giulio T,et al.Proteomic study of amyloid beta (25-35) peptide exposure to neuronal cells:Impact on APE1/Ref-1's protein-protein interaction[J].J Neurosci Res,2012,90(6):539-544.
[17] Maes M,Loyter A,Friedler A.Peptides that inhibit HIV-1 integrase by blocking its protein-protein interactions[J].Febs Journal,2012,279(16):2795-2809.
[18] King J,Haase-Pettingell C,Gossard D.Protein folding and misfolding[M].Springer,2012.
[19] Armon-Omer A,Levin A,Hayouka Z,et al.Correlation between shiftide activity and HIV-1 integrase inhibition by a peptide selected from a combinatorial library[J].Journal of Molecular Biology,2008,376(4):971-982.
[20] Tomai E,Butz K,Lohrey C,et al.Peptide aptamer-mediated inhibition of target proteins by sequestration into aggresomes[J].J Biol Chem,2006,281(30):21345-21352.
[21] Zhang YY,Zhou LM.Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation[J].Biochemical & Biophysical Research Communications,2012,423(1):26-31.
[22] Piccinin S,Tonin E,Sessa S,et al.A "Twist box" code of p53 inactivation:twist box:p53 interaction promotes p53 degradation[J].Cancer Cell,2012,22(3):404-415.
[23] Tsomaia N.Peptide therapeutics:Targeting the undruggable space[J].European Journal of Medicinal Chemistry,2015,94:459-470.
[24] Wang L,Teng R,Di L,et al.PPARα and Sirt1 mediate erythropoietin action in increasing metabolic activity and browning of white adipocytes to protect against obesity and metabolic disorders[J].Diabetes,2013,62(12):4122-4131.
[25] Teng R,Gavrilova O,Suzuki N,et al.Disrupted erythropoietin signalling promotes obesity and alters hypothalamus proopiomelanocortin production[J].Nature Communications,2011,2(1):193-198.
[26] Liu Y,Luo B,Shi R,et al.Nonerythropoietic erythropoietin-derived peptide suppresses adipogenesis,inflammation,obesity and insulin resistance[J].Scientific Reports,2014,5:15134.
[27] Wren AM,Small CJ,Ward HL,et al.The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion[J].Endocrinology,2013,141(11):4325-4328.
[28] Aulinger BA,Bedorf A,Kutscherauer G,et al.Defining the role of GLP-1 in the enteroinsulinar axis in type 2 diabetes (T2D) utilizing DPP-4 inhibition and GLP-1-receptor blockade[J].Diabetes,2013,63(3):1079-1092.
[29] Toft-Nielsen M,Madsbad S,Holst J.Determinants of the effectiveness of glucagon-like peptide-1 in type 2 diabetes[J].Journal of Clinical Endocrinology & Metabolism,2013,86(8):3853-3860.
[30] Vendrell J,El BR,Peral B,et al.Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance[J].Endocrinology,2011,152(11):4072-4079.
[31] Tomas E,Stanojevic V,Habener JF.GLP-1-derived nonapeptide GLP-1 (28–36) amide targets to mitochondria and suppresses glucose production and oxidative stress in isolated mouse hepatocytes[J].Regulatory Peptides,2011,167(2):177-184.
[32] Tomas E,Stanojevic V,Mcmanus K,et al.GLP-1(32-36)amide pentapeptide increases basal energy expenditure and inhibits weight gain in obese mice[J].Diabetes,2015,64(7):2409-2419.
[33] Shameer K,Madan LL,Veeranna S,et al.PeptideMine - A webserver for the design of peptides for protein-peptide binding studies derived from protein-protein interactomes[J].Bmc Bioinformatics,2010,11(39):6588-6593.
[34] Camperi SA,Martínez-Ceron MC,Giudicessi SL,et al.Peptide affinity chromatography based on combinatorial strategies for protein purification[J].Methods in Molecular Biology,2014,1129:277-302.

基金

国家973计划项目(2013CB530604);国家自然科学基金(81330067,81600665,81601333);南京市医学科技发展杰出青年基金项目(JQX13012);南京药学会-常州四药医院药学科研基金(2016YX003)

PDF(483 KB)

Accesses

Citation

Detail

段落导航
相关文章

/